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The geometry of prior selection

Hichem Snoussi∗

Abstract

This contribution is devoted to the selection of prior in a Bayesian learning framework. There is

an extensive literature on the construction of non informative priors and the subject seems far from a

definite solution [1]. We consider this problem in the light of the recent development of information

geometric tools [2]. The differential geometric analysis allows the formulation of the prior selection

problem in a general manifold valued set of probability distributions. In order to construct the prior

distribution, we propose a criteria expressing the trade off between decision error and uniformity

constraint. The solution has an explicit expression obtained by variational calculus. In addition,

it has two important invariance properties: invariance to the dominant measure of the data space

and also invariance to the parametrization of a restricted parametric manifold. We show how the

construction of a prior by projection is the best way to take into account the restriction to a particular

family of parametric models. For instance, we apply this procedure to autoparallel restricted families.

Two practical examples illustrate the proposed construction of prior. The first example deals with

the learning of a mixture of multivariate Gaussians in a classification perspective. We show in this

learning problem how the penalization of likelihood by the proposed prior eliminates the degeneracy

occurring when approaching singularity points. The second example treats the blind source separation

problem.
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I. Introduction

A learning machine can be described as a system mapping some inputs x to some outputs y (see

Figure 1). The inputs x and the outputs y lie in two general sets either euclidian or not. The learning of

the machine consists essentially in extracting information from some collected data in order to perform

a specific task related to the behavior of the modeled machine. The distinction inputs/outputs is not

in general related to the task performed by the learning machine. For instance, filtering consists

in estimating the inputs x given the outputs y. The inference consists in finding some parameter θ

characterizing the mapping y = fθ(x). The prediction consists in estimating the stochastic behavior of

the outputs given some previous recorded data, and so on. The complexity of the physical mechanism

underlying the mapping inputs/outputs or the lack of information make the prediction of the outputs

given the inputs (forward model) or the estimation of the inputs given the outputs (inverse problem)

a difficult task.
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Fig. 1. Learning machine model of experimental science

When a parametric forward model p(y |x, θ) is assumed to be available from the knowledge of the

system, one can use the classical ML (maximum likelihood) to estimate either the parameter θ or the

inputs x given the data (outputs) y. When a prior model p(x, θ) = p(x | θ) p(θ) is assumed to be

available too, the classical Bayesian methods can be used to obtain the joint a posteriori p(x, θ |y)

and then both p(x |y) and p(θ |y) from which we can make any inference about x and θ. The problem

of prediction can be stated as follows: given some training data D = (xi,yi)i=1..N , where i is the time

index and N is the sample size, our purpose is the estimation of the output probability distribution

(prediction). In this work, we focus on the prediction problem. We note that, in this situation, before

designing the learning algorithm, one is confronted to two important questions: (i) how to choose the

parametric model p(y |x, θ) (model selection), (ii) how to select a prior distribution on the parameter

θ. In words, the first question concerns the selection of an appropriate manifold in the whole set of
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probability distributions P, on which the learning algorithm will estimate the prediction p(y | D). This

problem is out of the scope of our paper. In [3, 4], one can find a geometric insight of the selection of

a model among a finite set of available models. Our contribution rather concerns the second question

of the selection of appropriate prior distribution. Assuming given a statistical model (differentiable

manifold) either parametric or not, we propose a novel method to construct a prior distribution. This

method can be interpreted as an inverse problem of geometric Bayesian learning [5,6]. In fact, Bayesian

learning consists in construction a decision rule (a mapping from the data space to the manifold Q of

predicted distributions, see Figure 2) by in minimizing a cost function (generalization error) given a

chosen manifold and a prior distribution on this manifold [5]. However, in the proposed method, we

assume a fixed prediction (reference distribution) and we minimize the decision error cost under an

uniformity constraint (a measure of ignorance).

In the sequel, we assume that we are given some training data x1..N and y1..N and some information

about the mapping which consists in a model Q of probability distributions, either parametric (Q =

{P (z | θ)}) or non parametric. The statistical manifold Q is the set of probability distributions on the

space Z = X ×Y (see Figure 2). The objective of a learning algorithm is to construct a learning rule

τ mapping the set D of training data D = (x1..N ,y1..N) to a probability distribution p ∈ Q ⊂ P (P is

the whole set of probability densities):

τ : D −→ Q
D 7→ q = τ(D)

The Bayesian statistical learning leads to a solution depending on the prior distribution of the

unknown distribution p. In the parametric case, where the points p of the manifold Q are parametrized

by a coordinate system θ, this is equivalent to the prior Π(θ) on the parameter θ. Finding a general

expression for Π(θ) and how this expression reflects the relationship between a restricted model (Q)

and the closer set of ignorance containing it are the main objectives of this paper. We show that the

prior expression depends on the chosen geometry (subjective choice) of the set of probability measures.

The entropic prior1 [7, 8] and the conjugate prior of exponential families are special cases related to

special geometries.

In section II, we review briefly some concepts of Bayesian geometrical statistical learning and the role

of differential geometry. In section III, we develop the basics of prior selection in a Bayesian decision

perspective and we discuss the effect of model restriction both from non parametric to parametric

1Some related work about ignorance and prior selection in a geometric framework can be found in

http://omega.albany.edu:8008/ignorance
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modelization and from parametric family to a curved family. In section IV, we study the particular

case of δ-flat families where previous results have explicit formula. In section V, we come across the case

of δ-flat families mixture. In section VI, we apply these results to a couple of learning examples, the

mixture of multivariate Gaussian classification and blind source separation. We end with a conclusion

and indicate some future scopes.

II. Statistical geometric learning

A. Mass and Geometry

The statistical learning consists in constructing a learning rule τ which maps the training measured

data D to a probability distribution2 q = τ(D) ∈ Q ⊂ P = {p |
∫

p = 1} (the predictive distribution).

We will discuss the consequences of the restriction to a subset Q in subsection II-C. Therefore, our

target space is a space of distributions and it is fundamental to provide this space with, at least in

this work, two attributes which are the mass (a scalar field) and a geometry. The mass is defined by

an a priori distribution Π(p) on the space P, before collecting the data D and modified according to

Bayesian rule, after observing the data to give the a posteriori distribution (see Figure 2):

P (p0 | D) ∝ P (D | p0) Π(p0), for all p0 ∈ P (1)

where P (D | p0) is the likelihood of the probability p0 to generate the data D (the distribution is to be

compared to a parameter in the classic maximum likelihood methods). In the sequel, z is the couple

(x,y) introduced in the introduction I. In the case of i.i.d samples D = {zi}i=1..N , the likelihood

of the probability p0 is simply P (D | p0) =
N
∏

i=1

p0(zi). For the parametric case Q = {pθ, θ ∈ �n},

where θ is a coordinate system and n is the dimension of the manifold, just replace p0 in equation (1)

by θ to find the classic Bayesian parametric formulation. We assume that the data D are generated

by an unknown distribution p∗. As the number N of data samples becomes large, the a posteriori

distribution P (p0 | D) is concentrated around the true distribution p∗ (consistency), under some weak

regular conditions 3.

2In literature, the considered subset Q is parametric. This restriction to parametric manifold is important for computational

reasons, that is why Q is also called the computational model. However, for the derivation of the main results of this contribution,

there is no need to restrict Q to be parametric.
3In section V-A, there is an example illustrating the violation of these conditions and how the construction of prior and the use

of Bayesian approach eliminate the singularity problem and ensure the consistency of the MAP solution.
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Fig. 2. The a posteriori mass is proportional to the product of the a priori mass and the likelihood function. As the

number of samples N grows, the a posteriori distribution P (p | D) (the dark ball) is more and more concentrated

around the true distribution p∗.

The geometry can be defined by the δ-divergence Dδ:



















Dδ(p, q) =
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1−δ +
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δ(1−δ) , δ 6= 0, 1

D1(p, q) = D0(q, p) =
∫

q −
∫

p+
∫

p log p/q

(2)

where the integration is defined with respect to a dominant measure. We notice that this definition is

parametric free. Therefore, in the case of a parametric restricted manifold Q, this measure is invariant

under reparametrization. It is shown in [9] that, in the parametric manifold Q, the δ-divergence

induces a dualistic structure (g,∇δ,∇1−δ), where g is the Fisher metric (defining the scalar product

in the tangent spaces), ∇δ the δ connection with Christoffel symbols Γδij,k and ∇∗ = ∇1−δ its dual

connection:


















gij = < ∂i, ∂j >= Eθ [∂il(θ) ∂jl(θ)]

Γδij,k = Eθ [(∂i∂jl(θ) + δ ∂il(θ)∂jl(θ)) ∂kl(θ)]

(3)

The parametric manifold Q is δ-flat if and only if there exists a parameterization [θi] such that the

Christoffel symbols vanish: Γδij,k(θ) = 0. The coordinates [θi] are then called the affine coordinates.

If for a different coordinate system [θ
′

i], the connection coefficients are null then the two coordinate
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systems [θi] and [θ
′

i] are related by an affine transformation, i.e there exists a (n× n) matrix A and a

vector b such that θ
′

= Aθ + b.

All the above definitions can be extended to non parametric families by replacing the partial deriva-

tives with the Fréchet derivatives. Embedding the model Q in the whole space of finite measures P̃
[5,6] not only the space of probability distributions P, many results can be proven easily for the main

reason that P̃ is δ-flat and δ-convex ∀ δ in [0 , 1], whereas, P is δ-flat for only δ = {0, 1} and δ-convex

for δ = 1. For notation convenience, we use the δ-coordinates
δ

l of a point p ∈ P̃ defined as:

δ

l(p) = pδ/δ (4)

A curve linking 2 points a and b is a function γ : [0 , 1] −→ P̃ , such that γ(0) = a and γ(1) = b. A

curve is a δ-geodesic in the δ-geometry if it is a straight line in the δ-coordinates:

δ

l(t) = (1 − t)
δ

l(a) + t
δ

l(b)

B. Bayesian learning

The loss quantity of a decision rule τ with a fixed δ-geometry can be measured by the δ-divergence

Dδ(p, τ(z)) between the true probability p and the decision τ(z). This divergence is first averaged

with respect to all possible measured data z and then with respect to the unknown true probability p

which gives the generalization error E(τ):

Eδ(τ) =

∫

p

P (p)

∫

z

P (z | p)Dδ(p, τ(z))

Therefore, the optimal rule τδ is the minimizer of the generalization error:

τδ = arg min
τ

{Eδ(τ)}

The coherence of Bayesian learning is shown in [5, 6] and means that the optimal estimator τδ can

be computed pointwise as a function of z and we do not need a general expression of the optimal

estimator τδ:

p̂(z) = τδ(z) = arg min
q

∫

p

P (p | z)Dδ(p, q) (5)

By variational calculation, the solution of (5) is straightforward and gives:

p̂δ =

∫

pδP (p | z)

which is exactly the a posteriori mean of the δ coordinates. The above result can be considered

as the extension of the classic parametric Bayesian inference to the more abstract set of probability



7

distributions. For example, consider the estimation of a parameter η from its a posteriori distribution

p(η | z). The δ divergence is to be compared to the quadratic cost ‖η − η̂‖2. The minimization of the

expected cost leads to the EAP (a posteriori expectation) solution: η̂ = Ep[η | z] =
∫

η p(η | z)dη.

From a physical point of view, the above solution is exactly the gravity center of the set P̃ within a

mass P (p | z), the a posteriori distribution of p and with the δ-geometry induced by the δ-divergence

Dδ. Here, we have the analogy with the static mechanics and the importance of the geometry defined

on the space of distributions. The whole space of finite measures P̃ is δ-convex and thus, independently

on the a posteriori distribution P (p | z) the solution p̂ belongs to P̃ ∀ δ ∈ [0 , 1].

C. Restricted Model

In practical situations, we restrict the space of decisions to a subset Q ∈ P̃ . Q is in general a

parametric manifold that we suppose to be a differentiable manifold. Thus Q is parametrized with a

coordinate system [θi]
n
i=1 where n is the dimension of the manifold. Q is also called the computational

model because the main reason of the restriction is to design and manipulate the points p with their

coordinates which belong to an open subset of
�n. However, the computational model Q is not

disconnected from non parametric manipulations and we will show that both a priori and final decisions

can be located outside the model Q.

Let’s compare now the non parametric learning with the parametric learning when we are constrained

to a parametric model Q:

C.1 Non parametric modeling:

The optimal estimate is the minimizer of the generalization error where the true unknown point p

is allowed to belong to the whole space P̃ and the minimizer q is constrained to Q (the integration is

computed over the whole set P̃ but the minimization is performed on the subset Q):

q̂(z) = τδ(z) = arg min
q∈Q

∫

p∈P̃

P (p | z)Dδ(p, q) (6)

Thus the solution q̂ is the δ-projection of the barycentre p̂ of (P̃, P (p | z), Dδ) onto the model Q (see

figure 3). A point b is the δ projection of a point a onto the manifold Q if b minimizes the δ divergence

Dδ(a, q), ∀q ∈ Q. The projection b can also be characterized by the property that the geodesic line

linking a and b is orthogonal to all curves in Q passing through the point b. For details, refer to [5]

where the authors define the point p̂ as the ideal δ-estimate and the point q̂ as the δ estimate within

the model Q.
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δ-projection

Q

q

q̂

p̂

P̃

Fig. 3. The δ estimate q̂ is the δ projection of the non parametric solution p̂ onto the computational model Q.

C.2 Parametric modeling:

The optimal estimate is the minimizer of the same cost function as in the non parametric case but

the true unknown point p is also constrained to be in Q:

q̂(z) = τδ(z) = arg min
q∈Q

∫

p∈Q

P (p | z)Dδ(p, q) = arg min
q∈Q

∫

θ

P (θ | z)Dδ(pθ, q)d θ (7)

The solution is the δ-projection of the barycentre p̂ of (Q, P (θ | z), Dδ) onto the model Q (see figure

4).

q̂
Q

P̃

Fig. 4. Projection of the barycentre solution onto the parametric model

The interpretation of the parametric modeling as a non parametric one and the effect of such

restriction can be done in two ways:

1. The cost function to be minimized in equation (7) is the same as the cost function in (6) when p is

allowed to belong to the whole set P̃ and the a posteriori P (p | z) is zero outside the model Q. This is
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the case when the prior P (p) has Q as its support. However this interpretation implies that the best

solution p̂ which is the barycentre of Q can be located outside the model Q and thus has a priori a

zero probability !

2. The second interpretation is to say that the cost function to be minimized in equation (7) is the

same as the cost function in (6) when the a posteriori P (θ | z) is the projected mass of the a posteriori

P (p | z) onto the model Q. This interpretation is more consistent than the first one. In fact, it is more

robust with respect to the model deviation. For instance, assume that the data are generated according

to a true distribution p∗ outside the manifold Q. As the sample size N gets larger, the a posteriori

distribution is more and more concentrated around the point p∗. The classic a posteriori measure of

the manifold Q will converge to 0. Consequently, the inference on the manifold Q has no meaning.

However, when considering the projected a posteriori distribution, the measure on the manifold Q will

concentrate around the δ projection of the true distribution p∗. Therefore, the parametric modeling is

equivalent to the non parametric modeling in the restricted case.

We note here the role of the geometry defined on the space P and the relative geometric shape of

the manifold. For instance, the ignorance is directly related to the geometry of the model Q. The

projected a posteriori or a priori can be computed by:

f⊥(q) ∝
∫

p∈Sq

f(p)

where f(p) designs the a priori or the a posteriori distribution and Sq = {p ∈ P̃ | p⊥ = q} the set of

points p whose the δ-projection is the point q in Q (see Figure 5).

δ projected mass

P̃

Q

δ projection

Fig. 5. Projection of the a priori/ a posteriori distribution on the manifold Q leads to an equivalence between the

parametric and non parametric modeling.
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The manipulation of these concepts in the general case is very abstract. However, in section IV, we

present the explicit computations in the case of restricted autoparallel parametric submanifold Q1 ∈ Q
of δ-flat families.

III. Prior selection

The present section is the main contribution of this paper. We address here the problem of prior

selection in a Bayesian decision framework. By prior selection, we mean how to construct a prior P (p)

respecting the following rule: Exploit the prior knowledge without adding irrelevant information. We

note that this represents a trade off between some desirable behaviour and uniformity (ignorance) of

the prior. We want to insist here, that the prior selection must be performed before collecting the data

z, otherwise the coherence of the Bayesian rule is broken down.

In a decision framework, the desirable behaviour can be stated as follows: Before collecting the

training data, provide a reference distribution p0 as a decision. The reference distribution can be

provided by an expert or by our previous experience. Now, we have the inverse problem of the

statistical learning. Before, the a posteriori distribution (mass) is fixed and we have to find the

optimal decision (barycentre). Now, the optimal decision p0 (barycentre) is fixed and we have to find

the optimal repartition Π(p) according to the uniformity constraint. In order to have the usual notions

of integration and derivation, we assume that our objective is to find the prior on the parametric model

Q = {qθ | θ ∈ Θ ⊂ �n}.

A. Family of (δ, α)-Priors

The cost function can be constructed as a weighted sum of the generalization error of the reference

prior and the divergence of the prior from the Jeffreys prior (The square root of the determinant of the

Fisher information [10]) representing the uniformity. In fact, the Fisher matrix is a bilinear form which

is a natural metric of the statistical manifold and it is shown that the square root of its determinant

represents an equal prior for all the distributions of the model [3]. It is worth noting that we are

considering two different spaces: the space P̃ of finite measures and the space G = {Π,
∫

Π = 1}
of prior distributions on the finite measures. Since we have two distinct spaces, we can choose two

different geometries on each space. In the sequel, we consider the δ-geometry on the space P̃ and the

α-geometry on the space of priors. For the same reason as for the distributions pθ, we embed the

space G of priors Π in the corresponding space of finite measure priors G̃ = {Π,
∫

Π > 0}. We have

the following family of cost functions parametrized 4 by the couple (δ, α) :

4The cost function is also parametrized by the weights γe and γu
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Jδ,α(Π) = γe

∫

Π(θ)Dδ(pθ, p0)d θ + γuDα(Π,
√
g) (8)

where Dδ and Dα are the δ divergence and the α divergence defined on the spaces P̃ and G̃ respectively,

according to equation (2). γe is the confidence degree in the reference distribution p0 (reflecting some a

priori knowledge) and γu the uniformity degree (constraint of ignorance). Considered independently,

these two coefficients are not significant. However, their ratio is relevant in the following. The cost (8)

can be rewritten as:


















Jδ,α(Π) = γeEδ(τ0) + γuDα(Π,
√
g)

∂τ0
∂z

= 0

where Eδ(τ0) is the generalization error of a fixed learning rule τ0. This learning rule is fixed as we

have not collected any data:

Eδ(τ0) =
∫

θ
Π(θ)

∫

z
p(z | θ)Dδ(pθ, τ0(z))d z d θ

=
∫

θ
Π(θ)Dδ(pθ, p0) d θ

The cost function represents a balance between a fixed predictive density p0 (the prior knowledge of

the user) and the uniformity constraint reflecting our prior ignorance. Its minimization is the inverse

problem of Bayesian statistical learning introduced in the previous section as the predictive density is

fixed and the cost function is minimized with respect to the prior density.

Theorem 1: The following (δ, α) measure:






























Πδ,α(θ) ∝
√

g(θ)
[

1 + (1 − α) γe

γu
Dδ(pθ, p0)

]1/(1−α)
, α 6= 1

Πδ(θ) ∝ e−
γe
γu
Dδ(pθ,p0)

√

g(θ), α = 1

(9)

minimizes the cost function Jδ,α(Π) over the space G̃. 2

See Appendix VIII-A for the proof of Theorem 1. The minimization of the function Jδ,α(Π) relies on

variational calculus. In the sequel, we call this measure the (δ, α)-Prior . For notational convenience,

we refer to the particular case (δ, 1)-Prior as δ-Prior 5.

Remark 1: The obtained (δ, α)-Prior family contains many particular known cases corresponding to

particular values of the couple (δ, α) and the ratio γe/γu. For instance:

5In the original contribution [11], the author proposed the particular case of α = 1 and considered the family of the (δ, 1)-Priors.
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• If (δ, α) = (1, 1) then the cost function (8) is the kullback-Leibler divergence between the joint

distributions of data and parameters. The (1, 1)-Prior is then the Entropic prior considered in [7].

• If (δ, α) = (0, 1) we obtain the conjugate prior for exponential families (see examples in Section

VI).

• For the particular case where Q is a δ Euclidean family (δ-flat + self dual6), we obtain the t-

distribution for α 6= 1 and the Gaussian distribution for α = 1.

• If the ratio γe/γu goes to 0, we obtain the Jeffreys prior
√

g(θ).

• If the ratio γe/γu goes to ∞ we obtain the Dirac concentrated on p0.

Remark 2: We note that the (δ, α)-Prior (9) can be extended to a coordinate free space Q. If

we consider the prior on the elements p of the non parametric space Q, then we have the following

expression:






























Πδ,α(p) ∝
√

g(p)
[

1 + (1 − α) γe

γu
Dδ(p, p0)

]1/(1−α)
, α 6= 1, p ∈ Q

Πδ(p) ∝ e−
γe
γu
Dδ(p,p0)

√

g(p), α = 1, p ∈ Q

(10)

where g(p) is a measure of statistical curvature of the space Q.

B. Choice of reference distribution

The model restriction to the parametric manifold Q is essentially for computational reasons. How-

ever, the reference distribution is a prior decision and does not depend on a post processing after

collecting the data. Therefore, the reference distribution p0 can be located in the whole space of prob-

ability measures. We can also have either a discrete set of N reference distributions (pi0)
N
i=1 weighted

by (γie)
N
i=1 or a continuous set of reference distributions (a region or the whole set of probability dis-

tributions) with a probability measure P (p0) corresponding to the weights (γie)
N
i=1 in the discrete case.

We assume in both cases (discrete and continu) that the weights sum to one:
∑

γie =
∫

Pr(p0) = 1.

We show in the following that the (δ, α)-Prior has the same expression form as (9) but with additional

terms measuring:

• the relative accuracy of the reference distributions, i.e the mean distance from the reference distri-

bution to the manifold Q.

• the dispersion of the reference distributions.

In the following, we give exact definitions of the two above notions (accuracy and dispersion) before

introducing the expression of the (δ, α)-Prior.

6A differentiable manifold is self dual if the dual connections are equal: ∇
∗ = ∇

1−δ = ∇.
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Definition 1: [ β-Barycentre ] The distribution pG is the β-barycentre of the discrete set

{(p1, γ
1
e), ..., (pN , γ

N
e )} if its β-coordinate

β

l (4) is:

β

l(pG) =

N
∑

i=1

γie
β

l(pi)

Definition 2: [ β-Barycentre ] The distribution pG is the β-barycentre of the continuous set (P̃ , Pr)
if its β-coordinate

β

l (4) is:
β

l(pG) =

∫

β

l(p0)Pr(p0)

We introduce the notions of accuracy and dispersion of a set of reference distributions (either

discrete or continuous).

Definition 3: [ β-Accuracy ] The β-accuracy of a set of reference distributions (P̃, Pr) (resp.

{(pi, γie)}) relatively to a manifold Q is the inverse of the β-divergence between the β-barycentre

of (P̃ , Pr) (resp. {(pi, γie)}) and its β-projection on the manifold Q (see Figure 6):

Aβ = 1/Dβ(pG, p
⊥
G) (11)

Definition 4: [ β-Dispersion ] The β-dispersion of a set of reference distributions (P̃ , Pr) (resp.

{(pi, γie)}) is the average of the β-divergence to the β-barycentre (see Figure 6):

Vβ =

∫

Dβ(p0, pG)Pr(p0) (resp.
∑

γieDβ(pi, pG)) (12)

β-Accuracy

β-Dispersion

pG

p⊥

G

β-projection

Q

Fig. 6. The continuous set of reference distributions is represented by the filled ball. The point pG is the β-barycentre

and p⊥G its β-projection on the manifold Q. The β-accuracy is the inverse of Dβ(pG, p⊥G). The β-dispersion is the

mean (according to the distribution Pr) of the divergence to pG.
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Theorem 2: In the general case where we are given a set of reference distributions (not necessarily

included in the manifold Q) with the corresponding probability measure (Pr in the continuous case

and {γie} in the discrete case) and if Q is δ-convex7, the (δ, α)-Prior has the following expression:







































Πδ,α(θ) ∝
√

g(θ)
[

1 +
(1 − α) γe

γu

1 + (1 − α) γe

γu
(1/A1−δ + V1−δ)

Dδ(pθ, p
⊥
G)

]1/(1−α)
, α 6= 1

Πδ(θ) ∝ e−
γe
γu

(1/A1−δ+V1−δ) e−
γe
γu
Dδ(pθ,p

⊥

G)
√

g(θ), α = 1

(13)

where pG is the (1− δ)-barycentre of reference distributions, p⊥G its (1− δ)-projection on Q, A1−δ and

V1−δ are the accuracy and the dispersion of reference distributions set. 2

Proof: see Appendix VIII-B.

First, we notice that the expression of the (δ, α)-Prior has a similar form as in the original expression

(9) (where the reference distribution belongs to the manifold Q (p0 = pθ0)). Second, we notice the

additional term (1−α) γe

γu
(1/A1−δ+V1−δ) in the denominator of the coefficient weighting the divergence

Dδ(pθ, p
⊥
G). The presence of this term is intuitive. In fact, it reduces the confidence coefficient (1−α) γe

γu

in the reference distribution p0, in particular when the reference distribution is located outside the

manifold Q (A1−δ < ∞) or when there is an uncertainty about p0 (V1−δ > 0). In words, when the

confidence coefficient γe/γu is very high (−→ ∞), the resulting weighting coefficient converges to

1/(1/A1−δ + V1−δ). Therefore, the (δ, α)-Prior does not converge to a dirac at p⊥G and implicitly takes

into account the accuracy and the dispersion of the reference set (see Figure 7). The confidence term

is bounded as follows:

1 ≤
(1 − α) γe

γu

1 + (1 − α) γe

γu
(1/A1−δ + V1−δ)

≤ 1/(1/A1−δ + V1−δ)

Example 1: In the particular case of only one reference distribution p0 located outside the manifold

Q (see Figure 7-a), the barycentre pG is p0. The accuracy is the inverse of the (1− δ)-divergence of p0

to Q (1/Dδ−1(p0, p
⊥
0 )) and the dispersion is null.

The above results show that whatever the choice of the reference distribution is, the resulting prior

has the same form with a certain (non arbitrary) reference prior belonging to the model Q. The

existence of many reference distributions (or even a continuous set) indicates implicitly the existence

of hyperparameters and the resulting solution shows that these hyperparameters are integrated and

7A manifold is β-convex if all the β-geodesics are contained in Q.
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Q

p0

p⊥0pθ

(1 − δ) projection

Accuracy

pG
(p2, γ2)

p⊥G
q

Q

(1 − δ) projection

(p1, γ1)

(p3, γ3) Accuracy

Dispersion
Accuracy

(1 − δ) projection

P (p0)

pG

p⊥G

Qq

(a) (b) (c)

Fig. 7. (a) The equivalent of the reference distribution p0 located outside Q is its 1 − δ projection, (b) the equivalent

reference distribution is the 1 − δ projection of the 1 − δ barycentre of the N references distributions, (c) The

equivalent reference distribution of a continum reference region is the 1 − δ projection of the 1 − δ barycentre.

at the same time optimized if the a priori average (the barycentre) is considered as an optimization

operation.

IV. δ-flat families

In this section we study the particular case of δ-flat families. Q is a δ flat manifold if and only if

there exists a coordinate system [θi] such that the connection coefficients Γδ(θ) are null. We call [θi]

an affine coordinate system. It is known that δ-flatness is equivalent to (1 − δ) flatness. Therefore,

there exist dual affine coordinates [ηi] such that Γ1−δ(η) = 0. One of the many properties of δ-flat

families is that we can express, in a simple way, the δ-divergence Dδ as a function of the coordinates

θ and η and thus any decision can be computed while manipulating the real coordinates. It is shown

in [9] that the dual affine coordinates [θi] and [ηi] are related by Legendre transformations and the

canonical divergence is:

Dδ(p, q) = ψ(p) + φ(q) − θi(p)ηi(q)

where ψ and φ are the dual potentials such that:


















∂ηj

∂θi
= gij

∂θi

∂ηj
= g−1

ij

∂iψ = ηi ∂iφ = θi

For example, the exponential families are 0-flat with the canonical parameters as 0-affine coordinates,

the mixture family is 1-flat with the mixture coefficients as 1-affine coordinates, P̃ = {p,
∫

p < ∞} is

δ flat for all δ ∈ [0 , 1].
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A. δ optimal estimates in δ-flat families

As indicated in section II, the δ optimal estimate is the δ projection of
∫

θ
pδP (θ | z) which is the

minimizer of the functional
∫

θ
P (θ | z)Dδ(pθ, q). We see that, in general, the divergence as a function of

the parameters [θi] has not a simple expression. However, with δ-flat manifolds, we obtain an explicit

solution. Noting that:

∂iDδ(pθ, q) = Dδ(pθ, (∂i)q) = θi(q) − θi(p)

the solution is:

q̂ = q(θ̂), θ̂ =

∫

θP (θ | z)d θ = Eθ |z[θ]

This means that the δ optimal estimate is the a posteriori expectation of the δ affine coordinates.

Since the only degree of freedom of the affine coordinates is the affine transformation, this estimate

is invariant under affine reparameterization. This property of invariance is well expected since we are

using a parametric free geometric construction of estimates.

In addition, noting that:

∂iD1−δ(p, q) = D1−δ(p, (∂i)q) = ηi(q) − ηi(p),

then the a posteriori expectation of the (1− δ) affine coordinates is the (1− δ) optimal estimate. We

can directly obtain this result by just replacing δ by (δ− 1), since a δ-flat manifold is also (1− δ)-flat.

In general, the δ-estimate is different from the (1 − δ)-estimate. They are equal in the case of an

Euclidean manifold (∇ = ∇∗).

B. Prior selection with δ-flat families

The (δ, α)-Prior Πδ,α has the following general expression:






















Πδ,α(θ) ∝
√

g(θ)

[1 + λDδ(pθ, p0)]
1/(1−α)

, α 6= 1

Πδ(θ) ∝ e−
γe
γu
Dδ(pθ,p0)

√

g(θ), α = 1

(14)

where λ is a fixed coefficient depending on the confidence ration γe/γu, the accuracy and the dispersion

(see Section III-B). p0 ∈ Q is the equivalent reference distribution in the manifold Q. When we assume

that Q is δ flat with affine coordinates [θi] and dual affine coordinates [ηi], the expression of the prior

becomes:






















Πδ,α(θ) ∝
√

g(θ)

[1 + λ(ψ(θ) − θi η0
i )]

1/(1−α)
, α 6= 1

Πδ(θ) ∝ e−
γe
γu

(ψ(θ)−θi η
0
i )

√

g(θ), α = 1

(15)
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where [θ0
i ] and [η0

i ] are the affine coordinates of p0.

Therefore, we have an explicit analytic expression of the prior.

Example 2: In the Euclidean case, that is when the connection ∇ is equal to its dual connection

∇∗, which is equivalent to equality of the affine coordinates [θi] = [ηi]: (i) the (δ, α)-Prior distribution

is a t-distribution with 1+α
1−α

degrees of freedom, mean θ0 and precision λ (ii) the δ-Prior (α = 1) is

Gaussian with mean θ0 and precision 2 γe/γu:























Πδ,α(θ) ∝
√

g(θ)

[1 + λ‖θ − θ0‖2]1/(1−α)
, α 6= 1

Πδ(θ) ∝ e−
γe
γu

‖θ−θ0‖2 √

g(θ), α = 1

C. Projection of Priors

We detail here the notion of prior projection. Our objective is how to determine a prior (or in general

a probability mass) on the subspace Qa taking into account the prior of the embedding space Q. The

essence of the projection mass notion is to define a prior on a restricted set by suitably projecting

the prior of the embedding space. Then, when working in the restricted space, we do not lose the

information about the initial space. This notion is completely different from the common notion of

defining the prior on Qa by just restricting the prior on Q (see Figure 8). This idea is very ambitious

comparing to our limited understanding of the geometry of the space under hand. For this reason, we

will illustrate the computation in the particular case of ∇∗-autoparallel submanifolds Qa ⊂ Q. The

general case needs a more abstract mathematical investigation about how to perform the projection.

Qa is (1 − δ)-autoparallel in Q if and only if, at every point p ∈ Qa, the covariant derivative ∇∗
∂a
∂b

remains in the tangent space Tp of the submanifold Qa at the point p. A simple characterization in flat

manifolds is that the (1 − δ)-affine coordinates [ui] of Qa form an affine subspace of the coordinates

[ηi]. We can show that by a suitable affine reparametrization of Q, the submanifold Qa is defined as:



















Qa = {pη ∈ Q |ηI = η0
I is fixed }

I ⊂ {1..n}

where n− |I| is the dimension of Qa. If we consider the space Qc
a such the complementary dual affine

coordinates θII = θ0
II are fixed (II = {1..n} − I), then the tangent spaces Tp and T c

p are orthogonal
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at the point p(η0
I , θ0

II). Consequently, the projected prior from Q onto Qa is simply:

Π⊥(p) =

∫

q∈Qc
a

Π(q) =

∫

θI

Π(θI , θ0
II)d θI

Hence, we see that the projected prior onto a ∇∗-autoparallel manifold is the marginalization in the

δ affine coordinates and not in with respect to the ηI coordinates as it seems intuitive at a first look.

This is essential due to the dual affine structure of the space P̃. In fact, this wrong intuition is due

to our experience with Euclidean spaces. In an Euclidean space, the θ-coordinates are equal to the η-

coordinates. Therefore, the projection is obtained by simply marginalizing the coordinates (see Figure

8).

Q

Qa

p0

θII = θ0II

ηI = η0I
p0

Qa

xII = x0
II

Q

xI = x0
I

(a) (b)

Fig. 8. (a) The orthogonal manifold to Qa is the manifold Qc
a obtained by fixing the complementary part of the dual

coordinates. The projected mass is then the integral along Qc
a, (b) In the Euclidean case, the dual coordinates are

equal. The projected mass is then obtained by marginalizing in the same coordinate system.

V. Mixture of δ-flat families and singularities

The mixture of distributions has attracted a great attention in that it gives a wider exploration

of the probability distributions space based on a simple parametric manifold. For instance, by the

mixture of Gaussians (which belongs to a 0-flat family) we can approach any probability distribution

in total variation norm. In this section, we study the general case of the mixture of δ flat families.
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The space can be defined as:



















Q = {pθ | pθ =
∑k

j=1wjpj(. ; θ
j)}

pj ∈ Qj , Qj is δ flat

where the manifolds Qj are either distinct or not.

The mixture distribution can be viewed as an incomplete model where the weighted sum is considered

as a marginalization over the hidden variable z representing the label of the mixture. Thus pθ =
∑

z p(z)p(x | z, θz) and the weights p(z) are the parameters of a mixture family. We consider now the

statistical learning problem within the mixture family. A mixture of δ flat families is not, in general,

δ flat. Therefore the δ optimal estimates have no more a simple expression. However, with data

augmentation procedure we can construct iterative algorithms computing the solution. In this section

and the following one, we focus on the computation of the particular case of δ-Prior (α = 1) of the

mixture density.

The δ-Prior has the following expression:

Πδ(θ) ∝ e−
γe
γu
Dδ(pθ,p0)

√

g(θ) (16)

The mixture (marginalization) form of the distribution pθ leads to a complex expression of the δ diver-

gence and the determinant of the Fisher information. However, the computation of these expressions

in the complete data distribution space [8] is feasible and gives explicit formula. By complete data y,

we mean the union of the observed data x and the hidden data z. Therefore, the divergence will be

considered between complete data distributions:

Dδ(p
c, pc0) =

∫

pc

1 − δ
+

∫

pc0
δ

−
∫

(pc)δ(pc0)
1−δ

δ(1 − δ)

where pc is the complete likelihood p(x, z | θ) and θ includes the parameters of the conditionals

p(x | z, θz) and the discrete probabilities p(z).

The additivity property of the δ-divergence is not conserved unless δ is equal to 0 or 1 [9]:

Dδ(p1p2, q1q2) = Dδ(p1, q1) +Dδ(p2, q2)−

δ (1 − δ)Dδ(p1, q1)Dδ(p2, q2)
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Consequently, in the special case of δ ∈ {0, 1}, we have the following simple formula:



















D0(p, p0) =
∑k

j=1w
0
j

[

D0(pj , p
0
j) + log

w0
j

wj

]

D1(p, p0) =
∑k

j=1wj

[

D1(pj, p
0
j) + log

wj

w0
j

]

A. Singularities with mixture families

It is known that in learning the parameters of Gaussian mixture densities [12] the maximum likeli-

hood fails because of the degeneracy of the likelihood function to infinity when certain variances go to

zero or certain covariance matrices approach the boundary of singularity. In [12], there is an analysis

of the occurrence of this situation in the multivariate Gaussian mixture case. In this section, we give

a general condition leading to this problem of degeneracy occurring in the learning within the mixture

of δ flat families.

Let Q a δ flat manifold and [θi] the natural affine coordinates and [ηi] the dual affine coordinates.

The two coordinate systems are related by Legendre transformation [9]:



















∂ηj

∂θi
= gij

∂θi

∂ηj
= g−1

ij

∂iψ = ηi ∂iφ = θi

where (gij)
j=1..n
i=1..n is the Fisher matrix and ψ and φ are the dual potentials.

It is clear from the expression of the variable transformation between the two affine coordinates that

a singularity of the Fisher information matrix g leads to non differentiability in the transformation

between θ and η. A singularity of g means that the determinant of this matrix is zero. Therefore,

it is interesting to study the behaviour of the dual divergence at the boundary of singularity and we

will show in an example that the dual divergences may have different behaviour as the distribution p

approaches the boundary of singularity.

To illustrate such behaviour, we take a Gaussian family {N (µ, σ2) |µ ∈ �
, σ ∈ �

+} which is a

2-dimensional statistical manifold 0-flat. The 0-affine coordinates are θ and the 1-affine coordinates

are η given by the following expressions:



















θ1 = µ
σ2 , θ2 = −1

2σ2

η1 = µ, η2 = µ2 + σ2

(17)
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The corresponding Fisher information are:

|g(θ)| ∝ σ6, |g(η)| ∝ 1/σ6 (18)

The canonical divergence has the following expression:

Dδ(p1, p2) = D1−δ(p2, p1) = ψ(p1) + φ(p2) − θi(p1) ηi(p2) (19)

where ψ and φ are the potentials given by:

ψ = µ2

2σ2 + log
√

2πσ, φ = −1
2
− log

√
2πσ (20)

We see that the degeneracy occurs when the variance σ goes to zero. A detailed study of how this

degeneracy occurs in the Gaussian mixture case is in [12] and this is recalled in the example of the

next section. Here we focus on the difference of behaviour of the two canonical divergences D0 and

D1.

The expression of the δ-Prior is:

Πδ ∝ e−Dδ(pθ,p0)
√

g(θ)

Following the complete data procedure:



















Π0 ∝ e
− γe

γu

P

wi0{D0(pi
θ,p

i
0)+log

wi0
wi

}√
g(θ,w)

Π1 ∝ e
− γe

γu

P

wi{D1(pi
θ ,p

i
0)+

wi
wi0

}√
g(θ,w)

The resulting prior is factorized and separated into independent priors on the components of the

Gaussian mixture. Combining expressions of (17), (18), (19) and ( 20) we note the following comparison

of the 0 and 1 priors through their dependences on the variance σj :

δ = 0 δ = 1

↓ ↓
p −→ ∂Q p −→ ∂Q

Π0 is O(σαj e
−k0/σ2

j ) Π1 is O(σ
2wj

γj
γu

j )

↓ ↓
Exponential Polynomial

where α, k0 are constant.

We note that:
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• For δ = 0, the prior decreases to 0 when p approaches the boundary of singularity ∂Q with an

exponential term leading to an inverse Gamma prior for the variance.

• For δ = 1, the prior decreases to 0 when p approaches the boundary of singularity ∂Q with a

polynomial term leading to a Gamma prior for the variance. We note the presence of the parameter

wi in the power term.

This kind of behaviour pushes us to use the 0 prior in that it is able to eliminate the degeneracy of

the likelihood function.

VI. Examples

In this section we develop the δ-Prior in 2 learning problems: Multivariate Gaussian mixture and

joint blind source separation and segmentation.

A. Multivariate Gaussian mixture

The multivariate Gaussian mixture distribution of x ∈ �n is:

p(xi) =
K

∑

k=1

wkN (xi ; mk,Rk) (21)

where wk, mk and Rk are the weight, mean and covariance of the cluster k. This can be interpreted as

an incomplete data problem where the missing data are the labels (zi)i=1..T of the clusters. Therefore,

the mixture (21) is considered as a marginalization over z:

p(xi) =
∑

zi

p(zi)N (xi | zi, θ)

where θ is the set of the unknown means and covariances. Our objective is the prediction of the future

observations given the trained data xi, i = 1..T . The whole parameter characterizing the statistical

model is η = (θ,w). We consider now the derivation of the δ prior for δ ∈ {0 , 1} and compare the

two resulting priors.

The δ prior has the following form:

Πδ(η) ∝ e−
γe
γu
Dδ(pη ,p0)

√

g(η)

Therefore, we have to compute the Dδ divergence and the Fisher information matrix. As noted in the

previous section and following [8], the computation is considered in the complete data space (X ×Z)T

of observations xi and labels zi, T is the number of observations. In fact, we mean the number of
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virtual observations as the construction of the prior precedes the real observations. We have:















































D0(η : η0) = E
x1..T ,z1..T |η0

[

log p(x1..T ,z1..T |η0)
p(x1..T ,z1..T |η)

]

D1(η : η0) = E
x1..T ,z1..T |η

[

log p(x1..T ,z1..T |η)
p(x1..T ,z1..T |η0)

]

gij(η) = − E
x1..T ,z1..T |η

[

∂2

∂i∂j
log p(x1..T , z1..T |η)

]

By classifying the labels z1..T and using the sequential Bayes rule between x1..T and z1..T , the δ

divergences become:


















D0(η : η0) = T
∑k

i=1w
0
i

(

D0(Ni : N 0
i ) + log

w0
i

wi

)

D1(η : η0) = T
∑k

i=1wi

(

D1(Ni : N 0
i ) + log wi

w0
i

)

where D0(Ni : N 0
i ) = D1(N 0

i : Ni) is the 0 divergence between two multivariate Gaussians:


















D0(Ni ‖N 0
i ) = 1

2

(

log |RiR
−1
i0 | + Tr

(

Ri0R
−1
i

)

− n + (µi − µi0)
∗R−1

i (µi − µi0)
)

D1(Ni ‖N 0
i ) = D0(N 0

i ‖Ni)

The Fisher matrix is block diagonal with K diagonal blocks corresponding to the components of

the mixture. Each block gi with size (n + n2 + 1) has also a diagonal form (n is the dimension of the

vector xt):

g =











[g1]
. . .

[gK ]











, gi =











wi gN (mi, Ri) [0]

[0] 1/wi











where gN is the Fisher matrix of the multivariate Gaussian and has the following expression:

gN (m,R) =











R−1 [0]

[0] −1
2
∂R−1

∂R











whose determinant is:

|gN (m,R)| = |R|−(n+2)

Thus, the determinant of the block gi is:

|gi(wi,mi,Ri)| =

(

1

2

)n2

w
(n2+n−1)
i |Ri|−(n+2) (22)
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The additional form of the {0 , 1} divergences (implying the multiplicative form of their exponentials)

and the multiplicative form of the determinant of the Fisher matrix (due to its block diagonal form)

lead to an independent priors of the components ηi = (wi,mi,Ri): Π(η) =
∏K

k=1 Π(ηi). The two

values of δ = {0 , 1} lead to two different priors Πδ:

• δ = 0:

Π0(ηi) ∝ exp
[

− γe

γu

(

w0
iD0(Ni : N 0

i ) + w0
i log

w0
i

wi

)]

√

|gi(ηi)|

∝ N
(

mi ; m0,
Ri

αw0
i

)

Wn

(

R−1
i ; ν0,R

−1
0

)

wβ0

i

(23)

with,

α = γe

γu
, ν0 = αw0

i , β0 = αw0
i + n2+n−1

2

Wn is the wishart distribution of an n× n matrix:

Wn(R ; ν,Σ) ∝ |R|
ν−(n+1)

2 exp
[

−ν
2
Tr

(

RΣ−1
)

]

The 0-prior is Normal Inverse Wishart for the mean and covariance (mi,Ri) and Dirichlet for the

weight wi, that is the conjugate prior.

• δ = 1:

Π1(ηi) ∝ exp
[

− γe

γu

(

wiD1(Ni : N 0
i ) + wi log wi

w0
i

)]

√

|gi(ηi)|

∝ N
(

mi ; m0,
Ri

αwi

)

Wn

(

Ri ; αwi − 1, αwi−1
αwi

R0

)

w
n2+n−1

2
−(1+ n

2
)αwi

i (w0
i )
αwi Γn(

αwi−1
2

)

(24)

where Γn is the generalized Gamma function of dimension n ([10] page 427):

Γn(b) =

[

Γ(
1

2
)

]
1
2
n(n−1) n

∏

i=1

Γ(b+
i− n

2
), b >

n− 1

2

The 1-prior Π1 (24) is the generalized entropic prior [8] to the multivariate case. We see that the

prior Π1 is a Wishart function of the covariance matrices Ri and the prior Π0 is an inverse Wishart

function of the covariances. This leads to a difference of the behaviour of these functions on the

boundary of singularity (the set of singular matrices). Figure 9 illustrates the problem of degeneracy

and highlights the advantage of penalizing the likelihood by a 0-Prior when learning the parameters

of the Gaussian mixture. In this simulation example, we have considered the ML estimation of a

mixture of 10 Gaussians of bi-dimensional vectors (n = 2). The 10 multivariate Gaussians have

the same covariance and the means are located on a circle. The graph on the left of the Figure 9
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represents the original distribution which is a mixture of 10 Gaussians. The graph in the middle

shows the estimated distribution with the maximum likelihood estimator. We note the degeneracy

of the maximum likelihood which diverges to very sharp Gaussians (because of the singularity of the

estimated covariances). The graph on the right shows the effect of regularization produced by the

penalization of the likelihood by a 0-Prior.

(a) (b) (c)

Fig. 9. (a) Original distribution, (b ) estimated distribution with maximum likelihood, given 100 samples, (c) estimated

distribution with penalized maximum likelihood, given 100 samples.

B. Source separation

The second example deals with the source separation problem. The observations x1..T are T samples

of m-vectors. At each time t, the vector data xt is supposed to be a noisy instantaneous mixture of

an observed n-vector source st with unknown mixing coefficients forming the mixing matrix A. This

is simply modeled by the following equation:

xt = Ast + nt, t = 1..T

where given the data x1..T , our objective is the recovering of the original sources s1..T and the unknown

matrix A. The Bayesian approach taken to solve this inverse problem [13–15] needs also the estimation

of the noise covariance matrix Rn and the learning of the statistical parameters of the original sources

s1..T . In the following, we suppose that the sources are statistically independent and that each source is

modeled by a mixture of univariate Gaussians, so that we have to learn each set of source j parameters

ηj which contains the weights, means and variances composing the mixture j:


















ηj =
(

η
j
i

)

i=1..Kj

η
j
i = (wji , m

j
i , σ

j
i )
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The index j indicates the source j and i indicates the Gaussian component i of the distribution of

the source j. Therefore we don’t have a multidimensional Gaussian mixture but instead independent

unidimensional Gaussian mixtures.

In the following, our parameter of interest is θ = (A,Rn,η): the mixing matrix A, the noise

covariance Rn and η contains all the parameters of the sources model. Our objective is the computation

of the δ priors for δ ∈ {0 , 1}. We have an incomplete data problem with two hierarchies of hidden

variables, the sources s1..T and the labels z1..T so that the complete data are (x1..T , s1..T , z1..T ). We

begin by the computation of the Fisher information matrix which is common to the both geometries.

B.1 Fisher information matrix

The Fisher matrix F(θ) is defined as:

Fij(θ) = − E
x1..T ,s1..T ,z1..T

[

∂2

∂i∂j
log p(x1..T , s1..T , z1..T | θ)

]

The factorization of the joint distribution p(x1..T , s1..T , z1..T | θ) as:

p(x1..T , s1..T , z1..T | θ) = p(x1..T | s1..T , z1..T , θ) p(s1..T | z1..T , θ) p(z1..T | θ)

and the corresponding expectations as

E
x1..T ,s1..T ,z1..T

[.] = E
z1..T

[.] E
s1..T |z1..T

[.] E
x1..T |s1..T ,z1..T

[.]

and taking into account the conditional independencies ((x1..T | s1..T , z1..T ) ⇔ (x1..T | s1..T ) and (s1..T | z1..T ) ⇔
∏

s
j
1..T | zj1..T ), the Fisher information matrix will have a block diagonal structure as follows:

g(θ) =























g(A,Rn) . . . [0]
... g(η1)

. . .

[0] . . . g(ηn)























(A,Rn)-block

The Fisher information matrix of (A,Rn) is:

Fij(A,Rn) = −E
s
E

x |s

[

∂2

∂i∂j
log p(x1..T | s1..T ,A,Rn)

]
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which is very similar to the Fisher information matrix of the mean and covariance of a multivariate

Gaussian distribution. The obtained expression is

g(A,Rn) =













(

E
s1..T

Rss

)

⊗ R−1
n [0]

[0] −1
2
∂R−1

n

∂Rn













where Rss = 1
T

∑

sts
∗
t and ⊗ is the Kronecker product.

We note the block diagonality of the (A,Rn)-Fisher matrix. The term corresponding to the mixing

matrix A is the signal to noise ratio as can be expected. Thus, the amount of information about the

mixing matrix is proportional to the signal to noise ratio. The induced volume of (A,Rn) is then:

|g(A,Rn)|1/2 dA dRn =
|E
η
Rss|m/2

|Rn|
m+n+1

2

dA dRn

(ηj)-block

Each g(ηj) is the Fisher information of a one-dimensional Gaussian distribution. Therefore, it is

obtained by setting n = 1 in the expression (22) of the previous section:

∣

∣g(ηj)
∣

∣

1/2
dηj =







Kj
∏

i=1

w
1/2
i

v
3/2
i







dηj

B.2 δ-Divergence (δ = 0, 1)

The δ-divergence between two parameters θ = (A,Rn,η) and θ0 = (A0,R0
n,η

0) for the complete

data likelihood p(x1..T , s1..T , z1..T | θ) is:






















D0(θ : θ0) = E
x,s,z|θ0

log p(x1..T ,s1..T ,z1..T |θ0)
p(x1..T ,s1..T ,z1..T |θ)

D1(θ : θ0) = E
x,s,z|θ

log p(x1..T ,s1..T ,z1..T |θ)

p(x1..T ,s1..T ,z1..T |θ0)

Similar developments of the above equation as in the computation of the Fisher matrix based on the

conditional independencies, lead to an affine form of the divergence, which is a sum of the expected

divergence between the (A,Rn) parameters and the divergence between the sources parameters η:






















D0(θ : θ0) = E
s|η0

D0
|s

(A,Rn : A0,R0
n) +D0(η : η0)

D1(θ : θ0) = E
s|η
D1
|s

(A,Rn : A0,R0
n) +D1(η : η0)
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whereDδ
|s

means the divergence between the distributions p(x1..T |A,Rn, s1..T ) and p(x1..T |A0,R0
n, s1..T )

keeping the sources s1..T fixed.

The δ-divergence between η and η0 is the sum of the δ-divergences between each source parameter

ηj and η
j
0 due to the a priori independence between the sources. Then, the divergence between ηj

and η
j
0 is obtained as a particular case (n = 1) of the general expression derived in the multivariate

case. Therefore we have the same form of the prior as in equations (23) and (24).

The expressions of the averaged divergences between the (A,Rn) parameters are:























































E
s|η0

D0
|s

(A,Rn : A0,Rn0) = 1
2

(

log
∣

∣RnR
−1
n0

∣

∣ + Tr (R−1
n Rn0)

+Tr

(

R−1
n (A − A0) E

s|η0
[Rss](A − A0)

∗

))

E
s|η
D1
|s

(A,Rn : A0,Rn0) = 1
2

(

log |Rn0R
−1
n | + Tr

(

R−1
n0 Rn

)

+Tr

(

R−1
n0 (A − A0)E

s|η
[Rss](A − A0)

∗

))

leading to the following δ priors on (A,Rn):























Π0(A,R
−1
n ) ∝ N

(

A ; A0,
1
α
R0
ss

−1 ⊗ Rn

)

Wim

(

R−1
n ; α,R0

n
−1

)

|E
s|η

[Rss]|
m
2

Π1(A,Rn) ∝ N
(

A ; A0,
1
α
E
s|η

[Rss]
−1 ⊗ R0

n

)

Wim

(

Rn ; α− n, α−n
α

R0
n

)

Therefore, the 0-prior is a normal inverse Wishart prior (conjugate prior). The mixing matrix and

the noise covariance are not a priori independent. In fact, the covariance matrix of A is the noise to

signal ratio 1
α
R0
ss

−1 ⊗ Rn. We note a multiplicative term which is a power of the determinant of the

a priori expectation of the source covariance E
s|η

[Rss]. This term can be injected in the prior p(η) and

thus the (A,Rn) parameters and the η parameters are a priori independent.

The 1-prior (entropic prior) is normal Wishart. The mixing matrix and the noise covariance are a

priori independent since the noise to signal ratio 1
α
E
s|η

[Rss]
−1 ⊗R0

n depend on the reference parameter

R0
n. However, we have in counterpart the dependence of A and η through the term E

s|η
[Rss]

−1 present

in the covariance matrix of A. In practice, we prefer to replace the expected covariance E
s|η

[Rss], in the

two priors, by its reference value R0
ss.

We note that the precision matrix for the mixing matrix A (αR0
ss⊗R−1

n for Π0 and αE
s|η

[Rss]⊗R0
n
−1

for Π1) is the product of the confidence term α = γe

γu
in the reference parameters and the signal to noise

ratio. Therefore, the resulting precision of the reference matrix A0 is not only our a priori coefficient

γe but the product of this coefficient and the signal to noise ratio.
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VII. Conclusion and discussion

In this paper, we have shown the importance of providing a geometry (a measure of distinguishibility)

to the space of distributions. A different geometry will give a different learning rule mapping the

training data to the space of predictive distributions. The prior selection procedure established in a

statistical decision framework needs to be taken in a specified geometry. The problem of prior selection

is considered as an inverse problem of a geometric statistical decision learning problem. The solving of

a variational cost function leads to a family a prior distributions called the (δ, α)-Priors. This family

contains many known particular cases of probability distributions such as the exponential family, the

student distribution, etc, which correspond to particular geometries.

All the results in this paper can be extended to manifold valued parametric models. Indeed, when

in a specific problem, the space of parameters is not Euclidean but rather a manifold, we can apply

this work results to construct a prior on the manifold. This can be done by

1. replacing the statistical manifold Q of probability distributions by the manifold of parameters under

hand.

2. choosing a suitable metric and an affine connection on the manifold.

We have also derived the expression of this family in the more general case of a set of reference

distributions by introducing the notions of accuracy and dispersion. We have tried to elucidate the

interaction between the parametric and non parametric modeling. The notion of ”projected mass”

gives to the restricted parametric modelization a non parametric sense and shows the role of the relative

geometry of the parametric model in the whole space of distributions. The same investigations are

considered in the interaction between a curved family and the whole parametric model containing it.

Exact expressions are shown in a simple case of auto-parallel families and we are working on the more

abstract space of distributions.
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VIII. Appendix

A. Proof of Theorem 1

Consider the (δ, α)-cost as a function of the prior Π:

Jδ,α(Π) = γe

∫

Π(θ)Dδ(pθ, p0)d θ + γuDα(Π,
√
g)

where the β-divergence Dβ is defined as:


















Dβ(p, q) =
R

p

1−β +
R

q

β
−

R

pβq1−β

β(1−β)
, β 6= 0, 1

D1(p, q) =
∫

q −
∫

p+
∫

p log p/q = D0(q, p)

For the first case (α 6= 0, 1), by variational calculus, we have the following expression of the variation

∆ Jδ,α:

∆ Jδ,α = γe

∫

Dδ(pθ, p0)∆ Π d θ + γu∆Dα(Π,
√
g)

= γe

∫

Dδ(pθ, p0)∆ Π d θ +
γu

1 − α

∫

(1 − (
Π

√

g(θ)
)α−1)∆Πd θ

=

∫

∆ Π

{

γeDδ(pθ, p0) +
γu

1 − α
− γu

1 − α
(

Π
√

g(θ)
)α−1

}

d θ

Equating ∆ Jδ,α to 0 yields the (δ, α)-Prior:

Πδ,α(θ) ∝
√

g(θ)
[

1 + (1 − α) γe

γu
Dδ(pθ, p0)

]1/(1−α)
, α 6= 0, 1

We note that the case α = 0 can be obtained simply by replacing α by 0 in the previous equation. We

have obtained the same result when considering the 0-divergence in the cost function.

For the case α = 1, the variation of Jδ,1 is:

∆ Jδ,1 = γe

∫

Dδ(pθ, p0)∆ Π d θ + γu∆D1(Π,
√
g)

= γe

∫

Dδ(pθ, p0)∆ Π d θ + γu

∫

log Π/
√

g(θ)∆Πd θ

∆ Jδ,1 = 0 yields the δ-Prior:

Πδ(θ) ∝ e−
γe
γu
Dδ(pθ,p0)

√

g(θ)

2
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B. Proof of Theorem 2

Before proving the theorem, we recall some important definitions and results (see [2,5,9] for details):

Theorem 3: [Pythagorean relation] If the β-geodesic connecting p and r is orthogonal to the

(1 − β)-geodesic connecting r and q (the geodesics are considered in a δ-flat space), then

Dβ(p, q) = Dβ(p, r) +Dβ(r, q)

Corollary 1: [β-Projection] Let p a point in a dually β-flat space S and Q a (1 − β)-autoparallel

manifold. Then a necessary and sufficient condition for a point q in Q to satisfyDβ(p, q) = minr∈QDβ(p, r)

is for the β-geodesic connecting p and q to be orthogonal to Q at q.

The point q is called the β-projection of p onto Q.

Using the above results, the following decomposition of the divergence is straightforward:

Corollary 2: Let p a point in a δ-convexe Q (with respect to the whole set P̃) and let p0 a point in

P̃ , then

Dδ(p, p0) = Dδ(p, p
⊥
0 ) +Dδ(p

⊥
0 , p0)

where p⊥0 is the (1 − δ)-projection of p0 onto Q.

Consider the cost function to be minimized, in the general case of not restricted reference distribu-

tions:

Jδ,α(Π) = γe

∫

Pr(p0)

∫

Π(θ)Dδ(pθ, p0)d θ + γuDα(Π,
√
g)

With the definition of the barycentre (Definition 2 in Section III-B) and the expression of the δ-

divergence (2), we have a simple expression of the integral with respect to the reference distribution

p0:
∫

P (p0)Dδ(pθ, p0) = Dδ(pθ, pG) + 1
δ
(<

∫

p0 >Pr −
∫

pG)

= Dδ(pθ, pG)+ < Dδ(pG, p0) >

(25)

Using Corollary 2 with the point p⊥G as the (1 − δ)-projection of pG onto Q, we can decompose the

divergence between the points pθ and pG as the geodesics are orthogonal (see Figure 10),
∫

P (p0)Dδ(pθ, p0) = Dδ(pθ, p
⊥
G) +Dδ(p

⊥
G, pG)+ < Dδ(pG, p0) >

= Dδ(pθ, p
⊥
G) + 1/A1−δ + V1−δ

(26)
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where the accuracy A1−δ and the dispersion V1−δ are defined according to Definition 3 and 4 respec-

tively.

pG

p⊥

G

Q

δ-geodesic

p

(1 − δ)-geodesic

Fig. 10. Pythagorean relation: the δ-geodesic l(p, p⊥G) is orthogonal to the (1 − δ)-geodesic l(p⊥G, pG).

Then, replacing the expression of the mean divergence (26) in the cost function (25) and minimizing

with respect to the prior Π using the same variational arguments as in the proof of Theorem VIII-A,

we obtain the expression of the (δ, α)-Prior:







































Πδ,α(θ) ∝
√

g(θ)
[

1 +
(1 − α) γe

γu

1 + (1 − α) γe

γu
(1/A1−δ + V1−δ)

Dδ(pθ, p
⊥
G)

]1/(1−α)
, α 6= 1

Πδ(θ) ∝ e−
γe
γu

(1/A1−δ+V1−δ) e−
γe
γu
Dδ(pθ,p

⊥

G)
√

g(θ), α = 1

2
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