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Abstract. This paper considers the problem of source separation in the case of noisy instantaneous mixtures.
In a previous work [1], sources have been modeled by a mixture of Gaussians leading to an hierarchical
Bayesian model by considering the labels of the mixture as i.i.d hidden variables. We extend this modeliza-
tion to incorporate a Markovian structure for the labels. This extension is important for practical applica-
tions which are abundant: unsu- pervised classification and segmentation, pattern recognition and speech signal
processing.

In order to estimate the mixing matrix and the a priori model parameters, we consider observations as in-
complete data. The missing data are sources and labels: sources are missing data for observations and labels
are missing data for incomplete missing sources. This hierarchical modelization leads to specific restoration
maximization type algorithms. Restoration step can be held in three different manners: (i) Complete likeli-
hood is estimated by its conditional expectation. This leads to the EM (expectation-maximization) algorithm
[2], (ii) Missing data are estimated by their maximum a posteriori. This leads to JMAP (Joint maximum a
posteriori) algorithm [3], (iii) Missing data are sampled from their a posteriori distributions. This leads to the
SEM (stochastic EM) algorithm [4]. A Gibbs sampling scheme is implemented to generate missing data. We
have also introduced a relaxation strategy into these algorithms to reduce the computational cost which is due
to the exponential influence of the number of source components and the number of the mixture Gaussian
components.
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Introduction

We consider the problem of source separation in the
noisy linear instantaneous case:

x(t) = As(t) + ε(t), t = 1..T (1)

x(t) is the m-vector of observations, s(t) the n-
vector of sources, ε(t) an additive Gaussian white
noise with covariance Rε and A the m × n mixing
matrix. Source separation problem consists of two
sub-problems: Sources restoration and mixing ma-
trix identification. Therefore, three directions can be
followed:

1. Supervised learning: Identify A knowing a training
sequence of sources s, then use it to reconstruct the
sources.

2. Unsupervised learning: Identify A directly from a
part or the whole observations and then use it to
recover s.

3. Unsupervised joint estimation: Estimate jointly s
and A.

Many techniques were proposed to solve the source
separation problem based on entropy and information
theoretic approach [5–9] and the maximum likelihood
principle [10–16] leading to contrast functions [17–20]
and estimating functions [21–24]. Among the limita-
tions of these methods, we can mention: (i) the lack
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of possibility to account for some prior information
about the mixing coefficients or other parameter in-
volved in the problem, (ii) the lack of information
about the degree of uncertainty of the mixing matrix
estimate particularly in the noisy mixture, (iii) the ob-
jective functions are intractable or difficult to optimize
when the source model is more elaborate. . . Recently,
a few works using the Bayesian approach have been
presented to push further the limits of these methods
[6, 25–31]. For example, in the Bayesian frame-
work, we can introduce some a priori informa-
tion on the sources and on the mixing elements as
well as on the hyperparameters by assigning ap-
propriate prior laws for them. Also, thanks to the
posterior laws, we can quantify the uncertainty of
any estimated parameter. Finally, thanks to sam-
pling schemes, we can propose tractable estimation
algorithms.

In this paper, we introduce a double stochastic model
for sources which has at least two advantages: (i) first,
it is a parametric model so that the update of its pa-
rameters in the separating algorithm is an easy task,
moreover, it is based on hidden variables so the esti-
mation of its parameters has the same nature as the
source separation problem, (ii) second, it is a good al-
ternative to non parametric modeling since it is able to
approach any probability distribution when increasing
the number of components.

The paper is organized as follows: We begin by
proposing a Bayesian approach to source separation.
We set up the notations, present the prior laws for
sources, mixing coefficients and hyperparameters in-
volved in the parametric distributions. The sources are
modeled by a double stochastic process by the intro-
duction of hidden variables representing the labels of
the mixture of Gaussians. The case of independent la-
bels has been considered in previous works [1, 32, 33].
In this paper, we consider a Markovian structure of the
labels. The mixing coefficients are supposed to have
Gaussian distributions. It is known that the estimation
of the variances by maximum likelihood is a degenerate
problem (likelihood function goes to infinity when the
variances approach zero) and the retained solution in
[34] is to constrain the variances to belong to a strictly
positive interval but this leads to a sophisticated con-
strained optimization. Recently, a Bayesian approach
was proposed to eliminate degeneracy when directly
observing the sources [35]. It consists in the penaliza-
tion of the likelihood by an Inverted Gamma prior. In
a previous work, we have shown that this degeneracy

still occurs in the source separation problem and that
an Inverted Gamma prior eliminates this degeneracy
[36].

The incomplete data structure of the problem sug-
gests the use of restoration maximization algorithms.
Recently, in [32, 33, 37] the EM algorithm has been
used in source separation with mixture of Gaussians as
sources prior. In this work, we show that:

1. This algorithm fails in estimating jointly the vari-
ances of Gaussian mixture and noise covariance ma-
trix. We proved that this is due to the degeneracy of
the estimated variance to zero.

2. The computational cost of this algorithm is very
high.

3. The algorithm is very sensitive to initial conditions.
4. In [32], there is neither an a priori distribution on

the mixing matrix A nor on the hyperparameters
η.

Here, we propose to extend this algorithm by:

1. Introducing an a priori distribution for the hyperpa-
rameters to eliminate the aforementioned degener-
acy.

2. Introducing an a priori distribution for A to express
our previous knowledge on the mixing matrix ele-
ments.

3. Giving a Markovian structure to the labels of the
mixture.

In Section 2, first we present the basics of general
restoration-maximization algorithms, then we give the
exact EM algorithm and discuss its computational cost.
Then, we present other restoration-maximization algo-
rithms:

(i) Viterbi-EM algorithm and Gibbs-EM algorithm.
The Viterbi and Gibbs modifications of the exact
EM algorithm breaks the temporal structure of the
hidden Markov chain and consequently reduce the
computational cost;

(ii) A fast version of the Viterbi-EM and Gibbs-EM al-
gorithms will be considered to reduce the computa-
tional cost exponentially growing with the number
of sources and the number of Gaussians of each
source component.

In Section 3, simulation results are presented to show
the performances of the proposed algorithms.
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1. Bayesian Approach to Source Separation

Given the observations x1..T , the joint a posteriori dis-
tribution of unknown variables s1..T and A is:

p(A, s1..T ,η | x1..T ) ∝ p(x1..T | A, s1..T ,ηn)

× p(A | ηa)p(s1..T |ηs)p(η)

(2)

where p(A |ηa) and p(s1..T |ηs) are the prior dis-
tributions through which we model our a priori in-
formation about mixing matrix A and sources s.
p(x1..T | A, s1..T ,ηn) is the joint likelihood distribu-
tion. η = (ηn,ηa,ηs) are the hyperparameters. From
here, we have two directions for unsupervised learning
and separation:

1. First, estimate jointly s1..T , A and η:

(Â, ŝ1..T , η̂) = argmax
(A,s1..T ,η)

{J (A, s1..T ,η)

= ln p(A, s1..T ,η | x1..T )} (3)

2. Second, integrate (2) with respect to s1..T to obtain
the marginal in (A,η) and estimate them by:

(Â, η̂) = argmax
(A,η)

{J (A,η) = ln p(A,η | x1..T )} (4)

Then estimate ŝ1..T using the posterior
p(s1..T |x1..T , Â, η̂).

The first direction was investigated in a previous work
[1]. In this paper, we focus on the second procedure
that is the identification of the mixing matrix A.

1.1. Choice of Prior Distributions

Sources Model. We model the component s j by a
hidden Markov chain distribution. A basic presentation
of this model is to consider it as a double stochastic
process:

1. A continuous stochastic process (s j
1 , s j

2 , . . . , s j
T )

taking its values in R.
2. A hidden discrete stochastic process (z j

1, z j
2, . . . ,

z j
T ) taking its values in {1..K j }.

The (z j
t )t=1..T form an homogeneous

Markov chain with initial probability vector

[pl = P(z j
1 = l)]l=1..K j and transition matrix

Plk = [P(z j
t+1 = k | z j

t = l)]l,k=1..K j . Conditionally to
this chain the source s j is time independent:

p
(
s j

1..T | z j
1..T

) =
T∏

t=1

p
(
s j

t | z j
t

)
(5)

and has a Gaussian law p(s j
t | z j

t = l) = N (m jl , σ jl).
This modeling is very convenient for at least two

reasons:

• It is an interesting alternative to non parametric
modeling.

• It is a convenient representation of weakly dependent
phenomena.

HMM models were successfully applied to represent
real speech signals and more elaborated HMM models
can be found in [38].

The case of time independent hidden labels has been
studied in [1, 32, 33].

Mixing Matrix Model. To account for some model
uncertainty, we assign a Gaussian prior law to each
element of the mixing matrix A:

p(Ai j ) = N
(
Mi j , σ

2
a,i j

)
(6)

which can be interpreted as knowing every element
(M j i ) with some uncertainty (σ 2

a,i j ). We underline here
the advantage of estimating the mixing matrix A and
not a separating matrix B (inverse of A) which is the
case of almost all the existing methods for source sep-
aration (see for example [39]). This approach has at
least two advantages: (i) A does not need to be invert-
ible (n �= m), (ii) naturally, we have some a priori
information on the mixing matrix not on its inverse
which may not exist.

Choosing Mi j = 0 and large values for σ 2
a,i j cor-

responds to the classical case where we do not know
a lot about this matrix. But, it happens that in some
applications we have some prior knowledge about the
elements of this matrix. For example, in the separa-
tion of cosmic microwave background observations,
we may know or want to impose some soft constraints
on these elements by fixing the means Mi j to the known
values and choosing small values for the variances
σ 2

a,i j .
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Hyperparameters a Priori. We propose to assign an
inverted Gamma prior IG(a, b) (a > 0 and b > 1)
to mixture variances. This prior is necessary to avoid
the likelihood degeneracy when some variances σ 2

i j ap-
proach to zero together with noise variance. A more
complete study of degeneracies in source separation
problem is presented in [36].

2. Data Augmentation Algorithms

The sources (st )t=1..T are not directly observed, so that
they form a second level of hidden variables, the first
level being represented by the labels (z j

t )t=1..T of the
density mixture. Thus, the separation problem consists
of two mixing operations, a mixture of densities which
is a mathematical representation of our a priori distri-
bution with unknown hyperparameters ηs and a real
physical mixture of sources with unknown mixing ma-
trix A:

z → Mixing densities → s → Mixing sources → ⊕ → x

↑ ↑ ↑
ηs? A? ε

We have an incomplete data problem. The incom-
plete data are the observations (xt )t=1..T , the miss-
ing data are the sources (s t )t=1..T and the vector la-
bels (zt )t=1..T . The parameters to be estimated are
θ = (A,η). This incomplete data structure sug-
gests the development of restoration-maximization al-
gorithms: Starting with an initial point θ0, perform two
steps:

• Restoration: Given the current estimateθk , any func-
tion of the missing data f (s, z) is replaced by an
attributed value f k .

• Maximization: Find θk+1 which maximizes the pe-
nalized complete likelihood p(x, s, z |θ)p(θ).

The restoration step can be carried in three different
manners:

1. f k is the conditional expectation of f (s, z) which is
computed given the current estimate of the param-
eter θ(k−1) at the previous iteration:

f k =
∫

s,z
f (s, z)p

(
s, z | x,θ(k−1)) dsdz (7)

This leads to the classical EM algorithm. A fun-
damental property of the EM algorithm is the fact
that it ensures the monotonous increasing of the in-
complete likelihood function. Any value of θ in-
creasing the expected complete log-likelihood in-
creases as well the incomplete log-likelihood, i.e.,
L(θ) ≥ Li (θ j ). Moreover, θ̂ is a critical point of
the incomplete likelihood p(x |θ) if and only if
it is a fixed point of the re-estimation transforma-
tion. A more detailed description of the convergence
properties of the EM algorithm can be found in
[2].

2. The hidden variables are replaced by their maxi-
mum a posteriori. The a posteriori distribution is
constructed given the observed data x and the cur-
rent estimateθ(k−1). Here, we have two levels of hid-
den variables: the sources s and the labels z. Given
z, the a posteriori of s is Gaussian so the computa-
tion of its mode ŝ and its covariance matrix can be
done analytically. This remark leaded us to estimate
first the labels z and then, like the EM algorithm, to
replace any function of s by its a posteriori expec-
tation value.

3. The hidden variables are sampled according to
their a posteriori distribution. This strategy has
the same scheme as the second strategy except
that here the a posteriori distribution of labels are
simulated and not summarized by just taking its
maximum.

In the following, we give an overview of each
strategy.

Exact EM Algorithm

The functional Q = E[log p(x, s, z |θ) +
log p(θ) | x,θk], computed in the first step of
the EM algorithm, is separable into three functionals
Qa,Qηg

and Qηp

Q = Qa + Qηg
+ Qηp

• The first functional Qa depends on A and Rε .
• The second functional Qηg

depends on ηg =
(mlk, σlk)l=1..n,k=1..Kl : means and variances of the
Gaussian mixture.

• The third functional Qηp depends on ηp =
(pl , Pl)l=1..n initial probabilities and transition ma-
trices of the Markov chains.
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Qa-Maximization. The functional to be optimized at
each iteration is:

Q(A, Rε |θ0) = −T

2
log | 2πRε |

− T

2
Tr

(
R−1

ε (Rxx − ARsx − R∗
sx A∗

+ ARss A∗)
) + log p(A) (8)

where (*) refers to the matrix transpose.
Defining the following statistics:



Rxx = 1

T

T∑
t=1

xt x∗
t

Rsx = 1

T

T∑
t=1

E[s t | x1..T , θ0]x∗
t

Rss = 1

T

T∑
t=1

E[s t s∗
t | x1..T ,θ0]

(9)

the updates of A and Rε become:


Vec
(

A(k+1)
) = [T R̂∗

ss ⊗ R−1
ε + diag(Vec(Γ))]−1

× Vec
(
T R−1

ε R̂xs + Γ 	 M
)

R(k+1)
ε = Rxx − A(k+1)Rsx − Rxs

(
A(k+1)

)∗

+ A(k+1)Rss
(
A(k+1)

)∗

(10)

where ⊗ is the Kronecker product [40], 	 is the
element-by-element product of two matrices, Vec(·) is
the column presentation of a matrix and Γ is the matrix
(1/σ 2

a,i j ). Thus, we need to compute the conditional ex-
pectations E[s t | x1..T ,θ0] and E[s t s∗

t | x1..T ,θ0]. Gen-
erally:

E[ f (s t ) | x1..T ,θ0] =
∑

E[ f (s t ) | x1..T ,θ0, zt = i]

× p(zt = i | x1..T ,θ0) (11)

The vector i = [i1, . . . , in] belongs to Z1 × Z2 ×
. . .Zn with Zl = {1..Kl}. Kl is the number of
Gaussians of each source component. Thus, we have
K = ∏n

l=1 Kl elements i in the previous sum.
The a posteriori expectations, given the variables

z = i , are easily derived:


E[s t | xt ,θ
0, zt = i] = [

A∗R−1
ε A + R−1

i

]−1

× [
A∗R−1

ε xt + R−1
i mi

]
= Mti

E[s t s∗
t | xt ,θ

0, zt = i] = [
A∗R−1

ε A + R−1
i

]−1

+ Mti M∗
ti

(12)

However, the computation of the marginal proba-
bilities p(zt = i | x1..T ,θ0) represents the major part
of the computation cost. The Baum-Welsh procedure
[41] can be extended to the case when the sources are
not directly observed. We define the Forward Ft (i) and
Backward Bt (i) variables by:


Ft (i) = P(zt = i | x1..T ,θ)

Bt (i) = p(xt+1..T | zt = i,θ)

p(xt+1..T | x1..T ,θ)

(13)

The computation of these variables is performed by
recurrence formula as follows:

F1(i) = M1 piN(Ami ,ARi A∗+Rε )[x1]

Ft (i) = Mt

∑
j

Ft−1( j)PjiN(Ami ,ARi A∗+Rε )[xt ]

(14)

BT (i) = 1

Bt (i) = Mt+1

∑
j

Bt+1( j)Pi jN(Am j ,AR j A∗+Rε )[xt+1]

where the Mt are normalization constants:


M1 =
[ ∑

i

piN(Ami ,ARi A∗+Rε )[x1]

]−1

Mt =
[ ∑

i

∑
j

Ft−1( j)PjiN(Ami ,ARi A∗+Rε )[xt ]

]−1

and

mi =




mi1

...

min


 , Ri =




σ 2
i1

0 . . . 0

0 σ 2
i2

. . . 0
...

...
. . .

. . . σ 2
in




Then p(zt = i | x1..T ,θ0) is easily derived as:

p(zt = i | x1..T ,θ0) = Ft (i)Bt (i)

The spatial independence of sources components or
more precisely the spatial independence of the labels
implies: 


pi =

n∏
l=1

pil = pi1 × pi2 . . . pin

Pi j =
n∏

l=1

Pl
il jl

where pil is the initial probability vector of the Markov
chain of the component l and Pl its transition matrix.
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The Forward-Backward computation complexity is
of order K 2T where K = ∏n

l=1 Kl is the number of
the vectorial labels. We note that this complexity grows
tremendously with the number of sources and the num-
ber of mixture components per source. If we choose the
same number Kl = k of mixture components for all
the sources, the complexity k2∗nT grows exponentially
with the number of sources n.

Qηg -Maximization. In order to establish the connec-
tion with the estimation of the parameters of hidden
Markov models when the sources are directly observed
and to elucidate the origin of the high computational
cost of the hyperparameter re-estimation, we begin by
the vectorial formula followed by the scalar expressions
of interest:

The vector i refers to the vector label (i1, i2, . . . , in)∗.
The vector mi designs (mi1 , mi2 . . . min )∗. The matrix
Ri refers to diag (σ 2

i1
, σ 2

i2
, . . . , σ 2

in
)

The re-estimation of the vectorial means and covari-
ances yields:




mi =
∑T

t=1 E[s t | xt , zt=i ,θ
0]P(zt=i | x1..T ,θ0)∑T

t=1 P(zt=i | x1..T ,θ0)
(15)

Ri =
∑T

t=1[E(s t s∗
t ) − Mti m∗

i − mi M∗
ti + mi m∗

i ]P(zt = i | x1..T ,θ0) + 2bI∑T
t=1 P(zt = i | x1..T ,θ0) + 2(a − 1)

with Mti = E[s t | xt , zt = i,θ0].
The re-estimation of the scalar means and variances

is obtained by a spatial marginalization of the vector
labels in the previous expressions:




mlk =
∑T

t=1

∑
(i | i(l)=k)[E(s t | xt , zt = i,θ0)]l P(zt = i | x1..T ,θ0)∑T

t=1

∑
(i | i(l)=k) P(zt = i | x1..T ,θ0)

(16)

σ 2
lk =

∑T
t=1

∑
(i | i(l)=k)([E(s t s∗

t | xt , zt = i)]l,l − mlk[E(s | xt , zt = i)]l + m2
lk)P(zt = i | x1..T ,θ0) + 2b∑T

t=1

∑
(i | i(l)=k) P(zt = i | x1..T ,θ0) + 2(a − 1)

In the second expression of (16), We note the simple
dependence of the variance update on the parameters a
and b of the inverted Gamma prior which has the same
form as in the non penalized case.

We can see clearly that, in addition to the marginal-
ization in time to compute the quantities P(zt =
i | x1..T ,θ0), we have to perform another marginaliza-
tion in the spatial domain.

Qηp -Maximization. The re-estimation of the initial
probabilities and the stochastic matrices for the vecto-

rial labels yields:




p(i) = P(z1 = i | x1..T ,θ0)

P(i j) =
∑T

t=2 P(zt−1 = i, zt = j | x1..T ,θ0)∑T
t=2 P(zt−1 = i | x1..T ,θ0)

(17)

By the same way, the probabilities of the scalar la-
bels are derived from the above expressions by spatial
marginalization:

p(i(l) = k) =
∑

(i | i(l)=k)

P(z1 = i | x1..T ,θ0)

P(i(l) = r, j(l) = s)

=
∑T

t=2

∑
(i, j | i(l)=r, j(l)=s) P(zt−1 = i, zt = j | x1..T ,θ0)∑T

t=2

∑
(i | i(l)=r ) P(zt−1 = i | x1..T ,θ0)

(18)

The expressions of P(zt−1 = i, zt = j | x1..T , θ0)
are obtained directly from the Forward and Backward

variables defined by (13):
P(zt−1 = i, zt = j | x1..T ,θ0)

= F0
t−1(i)P0(i, j)N(Am j ,AR j A∗+Rε )[xt ]B0

t ( j)Mt

Viterbi-EM Algorithm

When the number of labels K = ∏n
l=1 Kl grows, the

cost of the computation of the marginal probability
P(zt = i | x1..T ,θ0) and of the spatial marginalization
for the re-estimation of the hyperparameters become
very high. A solution to reduce the computational cost
is to modify the restoration strategy. The labels are re-
placed by their maximum a posteriori values which
corresponds to a classification step. This is performed
by a relaxation strategy: At iteration k, ẑk

t maximizes
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p(zt | x1..T , ẑk
i<t , ẑk−1

i>t ), which yields for t = 1..T :

zk
t = argmax

l=1..K
T [zk

t−1,l]
φ(xt |θl , Ak)T [l,zk−1

t+1 ]

and

zk
1 = argmax

l=1..K
φ(x1 |θl , Ak)T [l,zk−1

2 ]

zk
T = argmax

l=1..K
T [zk

T −1,l]
φ(xT |θl , Ak)

where T is the multidimensional transition matrix and
φ(x |θl , Ak) the marginal distribution (s is integrated
over) of x given the variable z = l:

φ(x |θl , Ak) =
∫

s
p(x, s | z = l,θl)ds

= N (x, Aml , ARlA∗ + Rε)

Then, all the expectations involved in the EM algorithm
are simply replaced by only one conditional expecta-
tion:

E[ f (s t ) | x1..T ,θ0] =
∑

i

E[ f (s t ) | x1..T ,θ0, zt = i]

× p(zt = i | x1..T ,θ0)

≈ E[ f (s t ) | x1..T ,θ0, ẑt ]

Gibbs-EM Algorithm

The hidden labels zt can also be generated accord-
ing to their a posteriori distributions, which leads to a
stochastic algorithm. Indeed, the advantage of this al-
gorithm is double: reduction of the computational cost
and the ability of the algorithm to avoid local maxima.
The labels are generated by Gibbs sampling: At iter-
ation k, ẑk

t ∼ p(zt | x1..T , ẑk
i<t , ẑk−1

i>t ), which yields for
t = 1..T :

zt ∼ Tzt−1zt φ(xt |θz, Ak)Tzt zt+1

and

z1 ∼ φ(x1 |θz, Ak)Tz1z2

zT ∼ TzT −1zT φ(xT |θz, Ak)

This version of the Gibbs-EM algorithm has approx-
imately the same computational cost as the Viterbi-
EM algorithm because we have to compute the vector
[p(zt = i | x1..T , zs �=t )]i=1..K .

As we have shown, the Viterbi and Gibbs versions of
the EM algorithm reduces the computational cost due
to the temporal structure of the discrete Markov chains
(z j

t ) j=1..n
t=1..T

. The complexity K 2T where K = ∏n
l=1 Kl

of Forward-Backward computation is reduced with the
Viterbi and Gibbs versions to KT (a reduction by a
factor K ). However, another source of a high compu-
tational cost is the number itself of the whole vector
labels z: K = |Z1 ×Z2 × . . .Zn |. Its impact appears
at two levels in the algorithms: First, in the computation
of the K quantities P(zt = i | x1..T ,θ) in the three pro-
posed algorithms to, respectively, compute the expecta-
tions (11), estimate the hidden variables z and generate
them according to their posterior. Second, in the spatial
marginalization in the estimation of the hyperparam-
eters ηg and η p in the expressions (16) and (18). We
show in the next section how we introduce a suitable ap-
proximation in order to reduce the computational cost
due to the exponential number of the vector labels.

Fast Viterbi-EM Algorithm

The a posteriori distribution of the vector label z is:

p(z | x,θ) =
∫

s
p(z, s | x,θ)ds

∝ p(z)
∫

s
p(x | s,θ)p(s | z,θ)ds (19)

We see easily in the second line of the above equation
that the distribution p(x | s,θ) gives the components
z j of the vector z a posteriori a spatial dependence
which is not the case a priori (p(z) = ∏

p(z j )). Con-
sequently, to estimate or to generate the labels z j , we
need the manipulation of the whole vector z. This is
the case, for example, when we want to compute the a
posteriori marginal distribution of the component z j ,
which needs the summation over all combinations of
labels:

p(z j (t) | x,θ) =
∑

z∈Z | z( j)=z j (t)

p(z(t) | x(t),θ) (20)

As solution to this issue, we introduce a relaxation strat-
egy which consists in replacing the expression (20) by:

p(z j (t) | x,θ′, ŝl �= j )

which is obtained by integrating only with respect to
s j , the other components are fixed and set to their MAP
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estimates in the previous iteration or drawn from their
a posteriori distributions. Fixing the components sl �= j

breaks the vectorial structure of the mixture and re-
duces considerably the computational cost. In state of
computing, at each time t , kn(k = K1 = · · · = Kn)
probabilities p(zt | xt ,θ) in the Viterbi and Gibbs ver-
sions, we have with the relaxation strategy only n × k
probabilities (p(z j (t) | x,θ′, ŝl �= j ))

j=1..n
z=1..k . Moreover, the

a posteriori distribution of the component s j when fix-
ing sl �= j is a mixture of K j Gaussians and its estimation
is easier than dealing with the whole vector s which a
posteriori distribution is a mixture of

∏n
l=1 Kl multi-

variate Gaussians.
Now the Fast Viterbi algorithm contains a spatial

relaxation (fixing sl �= j ) besides its temporal relaxation
(fixing zi �=t ):


z j (t)
k = argmax

l=1..K j

T [zk
j,t−1,l]

φ(xt | sl �= j ,θl , Ak)T[l,zk−1
j,t+1]

s j ∼ p(s j | xt , z j (t)
k,θ)

j = 1..n, t = 1..T

(21)

and

z j (1)k=argmax
l=1..K j

φ(x1 | sl �= j ,θl , Ak)T[l,zk−1
j,2 ]

{z j (T )k=argmax
l=1..K j

T[zk
j,T −1,l]

φ(xT | sl �= j ,θl , Ak)

where T is the transition matrix of the component j .
We note that after each estimation of the label z j (t)k ,
the source component s j is updated.

Fast Gibbs-EM Algorithm

The label components z j (t) are now generated accord-
ing to their corresponding probabilities:


z j (t) ∼ Tzt−1zt φ(xt | sl �= j ,θz, Ak)Tzt zt+1

s j ∼ p(s j | xt , z j (t)k,θ)
j = 1 . . . n, t = 2 . . . T − 1

(22)

and

z j (1) ∼ φ(x1 | sl �= j ,θz, Ak)Tz1z2

z j (T ) ∼ TzT −1zT φ(xT | sl �= j ,θz, Ak)

where T is the transition matrix of the component j .
The computational complexity concerning the up-

date of the discrete probabilities is then reduced by a

factor of about
∏n

l=1 Kl∑n
l=1 Kl

. If the number of mixture com-
ponents is the same for all the sources k = K1 = · · · =
Kl , we note that the complexity is transformed from kn

to n × k.

3. Simulation Results

To show the performances of the proposed algorithms,
we consider the mixture of 2 sources:

• Source 1: The a priori distribution is a mixture of 4
Gaussians (m, σ 2) ∈ {(−3, 0.1), (−1, 0.1), (1, 0.1),
(3, 0.1)} with a transition matrix T1:

T1 =




0.9 0.05 0.03 0.02

0.8 0.1 0.05 0.05

0.7 0.02 0.08 0.2

0.5 0.2 0.2 0.1




• Source 2: The a priori distribution is a mixture of 4
Gaussians (m, σ 2) ∈ {(−3, 0.1), (−1, 0.1), (1, 0.1),
(3, 0.1)} with a transition matrix T2:

T2 =




0.25 0.25 0.25 0.25

0.25 0.25 0.25 0.25

0.25 0.25 0.25 0.25

0.25 0.25 0.25 0.25




The transition matrix T1 has a dominant first column,
which means that the hidden labels zt have a great prob-
ability to remain in the first class. However, the transi-
tion matrix T2 has the same line which leads to an i.i.d
mixture. Figure 1 shows typical graphs of these signals.
The two sources are mixed with a matrix A = (1 0.6

−0.5 1 ),
a white Gaussian noise is added to the mixture with a
covariance matrix Rε = (1 0

0 1) (SNR = 8 dB). The
number of observations is 1000. Figure 1 illustrates
typical graphs of the mixed sources (x1(t))t=1..T and
(x2(t))t=1..T .

In order to characterize the mixing matrix identi-
fication achievement, we use the performance index
defined in [42]:

ind(S = Â−1 A) = 1

2

[∑
i

(∑
j

|Si j |2
maxl |Sil |2 − 1

)

+
∑

j

(∑
i

|Si j |2
maxl |Sl j |2 − 1

)]
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Figure 1. First line: Typical graphs of the sources s1 and s2. Even if in simulations we generated 1000 samples, here only 50 samples are
shown. Second line: Typical graphs of the mixed sources X1 = a11 S1 + a12 S2 and X2 = a21 S1 + a22 S2.

Figure 2(a) illustrates the evolution of the mixing co-
efficient estimates with the exact EM algorithm through
iterations. The horizontal line indicates the original
value. Note the convergence of the algorithm close the
original values after about 20 iterations. In these ex-
periments, we fix the hyperparameters to their orig-
inal values and we focus on the estimation of the
mixing matrix in order to compare easily the differ-
ent proposed algorithms to the exact EM algorithm.

In fact, the hyperparameter estimation with the exact
EM algorithm is very computational consuming. But,
with the proposed Gibbs/Viterbi proposed algorithms,
the hyperparameter estimation is easily performed and
the convergence is little slower when we jointly esti-
mate the hyperparameters (convergence after 100 it-
erations instead of 20 iterations as shown in Fig. 7).
Figure 2(b) illustrates the convergence of the perfor-
mance index with the EM algorithm to a satisfactory
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Figure 2. (a) Evolution through iterations of the estimates of the mixing coefficients with EM algorithm, (b) Evolution through iterations of
the performance criteria with EM algorithm. (c) and (d) Results of the reconstruction of the two sources using the EM algorithm.

value of −31 dB. Figure 2(c) and (d) shows the re-
sults of the source reconstruction by plotting on the
same graph the original sources and the recovered
sources. Note the success of the algorithm to recover the
sources.

Figure 3 shows the same simulation results with
the Viterbi-EM algorithm. We can note an expected
small bias for the estimation of the mixing matrix co-
efficients. We can explain this bias by the fact that
we estimate jointly the hidden variables zt in state of
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Figure 3. (a) Evolution through iterations of the estimates of the mixing coefficients with Viterbi-EM algorithm, (b) Evolution through iterations
of the performance criteria with Viterbi-EM algorithm. (c) and (d) Results of the reconstruction of the two sources using the Viterbi-EM algorithm.

integrating it over the problem and so the estimate is
biased with respect to the maximum likelihood esti-
mate. However, the ML estimate itself can be biased
when the number of observed data T is small be-

cause we have no more the efficiency of the likeli-
hood estimation and the property that the maximum
likelihood estimate is normally distributed around the
true value of the parameter. The maximum likelihood
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Figure 4. (a) Evolution through iterations of the estimates of the mixing coefficients with Gibbs-EM algorithm, (b) Evolution through iterations
of the performance criteria with Gibbs-EM algorithm. (c) and (d) Results of the reconstruction of the two sources using the Gibbs-EM algorithm.

estimate is shown to be unbiased in the asymptotic
case but with a moderate number of samples, we
can loose this property. Therefore, the joint estima-
tion of the hidden variables is not necessary worse

than the optimization of the incomplete likelihood
(note the bias with the EM estimate in Fig. 2(a). We
note that the performance index has a satisfactory
value of −24 dB. The computational cost reduction
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Figure 5. (a) Evolution through iterations of the estimates of the mixing coefficients with the Fast Viterbi algorithm, (b) Evolution through
iterations of the performance criteria with the Fast Viterbi algorithm. (c) and (d) Results of the reconstruction of the two sources using the Fast
Viterbi algorithm.

proportion with respect to the EM algorithm is about
K = 16.

Figure 4 illustrates the results for the Gibbs-EM al-
gorithm. We note the fluctuations due to the stochastic

aspect of the algorithm but we can add a simulated
annealing procedure to switch to the EM algorithm at
convergence. The natural extension of the Gibbs-EM
algorithm is to simulate the parameter θ according to
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Figure 6. (a) Evolution through iterations of the estimates of the mixing coefficients with the Fast Gibbs algorithm, (b) Evolution through
iterations of the performance criteria with the Fast Gibbs algorithm. (c) and (d) Results of the reconstruction of the two sources using the Fast
Gibbs algorithm.

the complete likelihood and then we have a sequence
(zk,θk) of generated variables and the Markov chain
(θk) has a stationary distribution which is its incom-
plete likelihood.

Figure 5 illustrates the results for the Fast Viterbi-EM
algorithm. Figure 6 illustrates the results for the Fast
Gibbs-EM algorithm. We note that the Fast versions
have numerically the same convergence performances
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as the Gibbs/Viterbi algorithms but with a smaller time
duration per iteration.

Conclusion

The estimation of the parameters of an hidden Markov
model HMM is an incomplete data problem, the miss-
ing data being the labels of the mixture. Extending this
problem to the blind separation of sources modeled by
hidden Markov models introduces a second level of
missing data which are the sources themselves. There-
fore, restoration maximization algorithms represent a
powerful tool for the estimation of the mixing matrix
and the hyperparameters which are the HMM param-
eters. We proposed three different restoration maxi-
mization algorithms distinguished by their respective
restoration strategies and having different convergence
properties and complexities:

• Exact EM algorithm: The expectation functional is
separable into three different parts corresponding to
the three sets of parameters: those of p(x |s, z), those
of p(s|z) and those of p(z).

• Viterbi-EM algorithm: The labels are replaced by
their maximum a posteriori MAP.

• Gibbs-EM algorithm: The labels are sampled ac-
cording to their a posteriori distribution.

A relaxation step is proposed to accelerate the above
algorithms when the number of source components and
the number of mixture Gaussians grow. It is worth
noting that in this paper we have supposed that the
number of sources and the number of Gaussians are
known. However, we are working on this problem that
the Bayesian approach seems to be able to solve, by
considering these numbers as unknown parameters to
be estimated.

References

1. H. Snoussi and A. Mohammad-Djafari, “Bayesian Source Sep-
aration with Mixture of Gaussians Prior for Sources and Gaus-
sian Prior for Mixture Coefficients,” in Bayesian Inference and
Maximum Entropy Methods, A. Mohammad-Djafari (Ed.), Gif-
sur-Yvette, France, July 2000, pp. 388–406, Proc. of MaxEnt,
Amer. Inst. Physics.

2. A.P. Dempster, N.M. Laird, and D.B. Rubin, “Maximum Likeli-
hood from Incomplete Data via the EM Algorithm,” J. R. Statist.
Soc. B, vol. 39, 1977, pp. 1–38.

3. W. Qian and D.M. Titterington, “Bayesian Image Restora-
tion: An Application to Edge-Preserving Surface Recovery,”

IEEE Trans. Pattern Anal. Mach. Intell., vol. 15, no. 7, 1993, pp.
748–752.

4. G. Celeux and J. Diebolt, “The SEM algorithm: A Probabilistic
Teacher Algorithm Derived from the EM algorithm for the Mix-
ture Problem,” Comput. Statist. Quat., vol. 2, 1985, pp. 73–82.

5. A. Cichocki and R. Unbehaunen, “Robust Neural Networks with
On-Line Learning for Blind Identification and Blind Separation
of Sources,” IEEE Trans. on Circuits and Systems, vol. 43, no.
11, 1996, pp. 894–906.

6. S.J. Roberts, “Independent Component Analysis: Source
Assessment, and Separation, a Bayesian Approach,” IEE
Proceedings—Vision, Image, and Signal Processing, vol. 145,
no. 3, 1998.

7. T. Lee, M. Lewicki, and T. Sejnowski, “Unsupervised Classifica-
tion with non Gaussian Mixture Models Using ICA,” Advances
in Neural Information Processing Systems, 1999, (in press).

8. T. Lee, M. Lewicki, and T. Sejnowski, “Independent Component
Analysis using an Extended Infomax Algorithm for Mixed Sub-
Gaussian and Super-Gaussian Sources,” Neural Computation,
vol. 11, no. 2 1999, pp. 409–433.

9. T. Lee, M. Girolami, A. Bell, and T. Sejnowski, “A Unifying
Informationtheoretic Framework for Independent Component
Analysis,” Int. Journal of Computers and Mathematics with Ap-
plications Computation, 1999, (in press).

10. I. Ziskind and M. Wax, “Maximum Likelihood Localization
of Multiple Sources by Alternating Projection,” IEEE Trans.
Acoust. Speech, Signal Processing, vol. ASSP-36, no. 10, 1988,
pp. 1553–1560.

11. M. Wax, “Detection and Localization of Multiple SSources via
the Stochastic Signals Model,” IEEE Trans. Signal Processing,
vol. 39, no. 11, 1991, pp. 2450– 2456.

12. J.-F. Cardoso, “Infomax and Maximum Likelihood for Source
Separation,” IEEE Letters on Signal Processing, vol. 4, no. 4,
1997, pp. 112–114.

13. J.-L. Lacoume, “A Survey of Source Separation,” in Proc. First
International Conference on Independent Component Analysis
and Blind Source Separation ICA’99, Aussois, France, Jan. 11–
15, 1999, pp. 1–6.

14. E. Oja, “Nonlinear PCA Criterion and Maximum Likelihood
in Independent Component Analysis,” in Proc. First Interna-
tional Conference on Independent Component Analysis and
Blind Source Separation ICA’99, Aussois, France, Jan. 11–15,
1999, pp. 143–148.

15. R.B. MacLeod and D.W. Tufts, “Fast Maximum Likelihood Es-
timation for Independent Component Analysis,” in Proc. First
International Conference on Independent Component Analysis
and Blind Source Separation ICA’99, Aussois, France, January
11–15, 1999, pp. 319–324.

16. O. Bermond and J.-F. Cardoso, “Approximate Likelihood for
Noisy Mixtures,” in Proc. First International Conference on In-
dependent Component Analysis and Blind Source Separation
ICA’99, Aussois, France, Jan. 11–15, 1999, pp. 325–330.

17. P. Comon, C. Jutten, and J. Herault, “Blind Separation of Sources
.2. Problems Statement,” Signal Processing, vol. 24, no. 1, 1991,
pp. 11–20.

18. C. Jutten and J. Herault, “Blind Separation of Sources .1. An
Adaptive Algorithm based on Neuromimetic Architecture,” Sig-
nal Processing, vol. 24, no. 1, 1991, pp. 1–10.

19. E. Moreau and B. Stoll, “An Iterative Block Procedure for the
Optimization of Constrained Contrast Functions,” in Proc. First



278 Snoussi and Mohammad-Djafari

International Conference on Independent Component Analysis
and Blind Source Separation ICA’99, Aussois, France, Jan. 11–
15, 1999, pp. 59–64.

20. P. Comon and O. Grellier, “Non-linear Inversion of Underde-
termined Mixtures,” in Proc. First International Conference on
Independent Component Analysis and Blind Source Separation
ICA’99, Aussois, France, Jan. 11– 15, 1999, pp. 461–465.

21. J.-F. Cardoso and B. Laheld, “Equivariant Adaptive Source
Separation,” IEEE Trans. on Sig. Proc., vol. 44, no. 12, 1996,
pp. 3017–3030.

22. A. Belouchrani, K. Abed Meraim, J.-F. Cardoso, and Éric
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