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ABSTRACT

In this contribution, we propose a Bayesian sampling sofuto
the problem of noisy blind separation of generalized hypkcb
(GH) signals. GH models, introduced by Barndorff-Nielsen i
1977, represent a parametric family able to cover a wide range of
real signal distributions. The alternative constructiéthese dis-
tributions as a normal mean-variance (continuous) mixteaels

to an efficient implementation of the MCMC method applied to
source separation. The incomplete data structure of thei§H-d
bution is indeed compatible with the hidden variable natiréne
source separation problem. Our algorithm involves hyparpa-
ters estimation as well. Therefore, it can be used, indegehd

to fit the parameters of the GH distribution to real data.

1. INTRODUCTION
In this paper, we consider the blind source separation enobl
as the reconstruction of sources from a noisy linear inategus
mixture:

Ty = ASt +ne, t= 1, .4.,T,

wherex., s; andn. are respectively thémn x 1) observation vec-
tor, the(n x 1) unknown source vector and tiig: x 1) unknown
noise vector at instarit A is the (m x n) unknown mixing ma-
trix. A challenging aspect of the BSS problem is the abserice o
information about the mixing matriv.

Many proposed algorithms are designed to linearly demixing
the observationg . r on the basis of independent identically dis-
tributed (iid) source modeling. The separation principiehiese
methods relies on the statistical independence of the staarned

sources. This is the case of Independent Component Analysis

(ICA) [1]. However, ICA is designed in a noiseless framework
In addition, the separation necessarily relies also ondrigihder
statistics, allowing at most one source to be Gaussian.]jnHe
noisy case was tackled with the maximum likelihood appragsh
ing the EM algorithm, the sources being modeled by finite Gaus
sian mixture. However, exact implementation of the EM alton

is computationally expensive. In addition, the choice &f ttum-
ber of Gaussian components remains a difficult task anddithé
use of the separation method to some particular types ofigal
nals (e.g. audio signals, piecewise homogeneous images [2]

Our contribution is to efficiently implement a maximum like-
lihood solution in the noisy case, the sources being iid. fitee
posed method is based on the estimation of the mixing matrix,
the source distribution parameters and the noise covariara:
trix. Thus, the same algorithm can be applied to overdetermi
nate as well as underdeterminate cases without any prewigdte
step. As the underdeterminate case can be solved by ergloiti

the sparsity of sources [3], the generalized hyperbolic X@is-
tributions are well appropriate to model the sources anducap
their heavy tails and also their skewness. The method iitiglic
incorporates a denoising procedure and it is consequenibiyst
to high level noise. The key point is the use of Barndorffiska’s
Generalized hyperbolic distributions [4]. Their representation
as normal mean-variance continuous mixture models is temar
ably compatible with the hidden structure of the source 1sejmm
problem: they can be interpreted either as stationary namsGa
sian, or as Gaussian non stationary processes. This psogide
new insight into the unification of the use of non stationagg-s
ond order statistics and stationary higher order stagigticsolve
the problem of blind source separation. In addition, thédketo
an efficient Bayesian Gibbs sampling implementation, astme
ditionals of the sources and the mixing matrix are Gaussigm.
this extent, we obtain a generalization of the finite Gaumssia-
ture modeling while preserving the benefit of normal cooditig

in the Gibbs sampling solution. This work also generalizes t
Gibbs separating algorithm in [5] where sources are modajed
t-Student distributions, since the latter form a subcldgbe GH
family.

The paper is organized as follows. Section 2 is devoted to the
GH law and to its properties. More specifically, we preserarag
inal Bayesian algorithm to fit the five parameters of the GHridis
bution from an observed finite sample. In Section 3, a Bapesia
gorithm is introduced to solve the blind source separatioblgm
in the noisy case. Finally, some simulation results corratiog
the efficiency of the proposed algorithm are presented.

2. GENERALIZED HYPERBOLIC PROCESSES

2.1. Description and properties

In this paragraph, we briefly describe the GH distributiond a
their main properties. The GH law is mainly used to fit finahcia
data. It corresponds to a five parametric fardity\, «, 3, 0, u1) in-
troduced by Barndorff-Nielsen [4]. A random variabtebelongs

to H(\, «, 8,6, ) if its pdf reads:
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wherev? = o — 5% and K, is the modified Bessel function of

rzeR (1)

_ third kind:
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The valid domain for the parameters is as follows:

§>0, a>0, o®>p* for A>0,
Mp€eER,{ >0, a>0, o®>>p% for A=0,
§>0, a>0, o?>p3% for A<O.

GH distributions enjoy the property of being invariant undgine
transformations:

X ~HONa,B,6,1) = aX+b~ H(/\,

g, é,ad,a/Aer).

a a

Many known subclasses can be obtained, either by fixing same p
rameters or by considering limiting cases:= 1 and\ = —1/2
respectively yield the hyperbolic and the NIG distribudthe lat-
ter being closed under convolution)\;= 1 with § — 0 provides
the asymmetric Laplace distributiony = —1/2 with a — 0
corresponds to the Cauchy distribution ; the asymmetritedda
distribution is obtained fotv = | 3|, etc. Figure 1 depicts examples
of GH distributions. One can note that a wide range of taiveh
iors is covered.
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Fig. 1. Examples of the GH distributions:

(a) hyperboliccaseA = 1,a =1, = .5,6 =.001,u =0;

(b) Cauchy case\ = —.5,a« = .01,8=.001,6 = .01,u =0;

(c) Studentcasex =3,a=1,8=1, =1,u=0.

Pdfs appear on top row, log densities on bottom row. The dashe
line corresponds to the Gaussian distribution with the samean
and variance.

An important feature of the GH distribution is its expressio
as a continuous normal mean-variance mixture:

@i a,8,0.0 = [ Nlaspet ) GIG(ws A, 8) du
0
@

where the variancB®” of each Gaussian component follows a Gen-
eralized Inverse Gaussian (GIG) distributian & 0):

GIG(w; A, 7,0) = %w’\_lexp {75(5 +72w)} .

1. First generateW ~ GIG()\, 7, 6).
2. Then generat& ~ N (p+ W, W).

Such a property will be a key point both in the estimation & th
parameters and in the BSS problem.

2.2. Parameter estimation

The estimation of parameters= (A, «, 3, 0, 1) from an iid GH
sample{z;}:=1..~ is a difficult task. As reported in [7], this dif-
ficulty is essentially due to the flatness of the likelihoodharie-
spect to the parameters and particularly with respect tpanaem-
eter\. In the literature, several contributions are restrictethe
estimation of parameters within particular subclassen(fixhe
value of the paramete¥). Recently, Protassov [8] used the incom-
plete data structure of the problem (2) to propose an EM gigor
The EM algorithm is however restricted to work within sulsses,
that is for fixed\. A Bayesian sampling solution is proposed by
Lillestol [9] for the case of NIG distribution. However, thpgo-
posed algorithm is restricted fo= —1/2. In this paper, we pro-
pose an original contribution to GH parameter estimatiathaut
restrictions, exploiting the latent problem structure &aded on
Gibbs sampling. We propose a reparametrization of the Gtd-dis
bution in order to efficiently sample the conditiorfal§he Gibbs
sampling algorithm for estimating the parametgrsonsists in al-
ternating the sampling of the hidden varianees.n (given the
parameterp) and the conditional sampling of the parameter of
interestn (given the variances). Tha posterioridistribution is,
according to the Bayes rule,

p(wi.N | T1.8,1) =
N 1
H GIG (wi; A — 5,% +B%,8% + (z: — u)Q) (3)
1=1

where we note that the GIG density is a conjugate priordthes-
teriori density belongs to the same family). The sampling of the
variances relies then on the efficient sampling of the GlGridis
bution. This is performed by the Ratio method [10] which is an
exact rejection sampling method [6]. The second step of thbss
algorithm consists in sampling the parameterccording to its
conditionala posterioridistributionp(n | z1..nx,w1..n) Which is
written as,

(4)

wherep(n) is thea priori distribution of the parametey that we

suppose flat in the sequel(f)) « cte). A key point in the pro-
posed Gibbs sampling is the reparametrization of the hypierb
distribution:& = ¢(n) = (A, a,b, B, p):

p(n | 21N, wi.n) x p(zi.N,wi.N | 7)p(n)

SL=A=m m=&
§2=7/0 = \/m5 —n3/m N2 = gv&&s +&
Ga=v6=ni—mim < {Mm=E&
a=0=mn3 ’ ’ ns = /&3/&2

& =p=mns s = &5

1Among the Matlab files freely available from the first autttbe pro-
gram rGIG.m efficiently simulates a GIG random variable dase the

In other words, the GH process can be seen as a doubly stiachast ratio method [6].

process:

2this reparametrization is different from that considemre{Bj.



3. BAYESIAN BLIND SEPARATION

In this section, we assume thatGH sources are indirectly ob-
served. The collected data are a noisy linear mixture ofdbeces.
The forward model of the observation process can be casein th
following simple matrix form:

X = AS + N,

where the(m x T')-matrix X contains then observed rows, the
(nx T)-matrix.S contains the: unobserved source rows aidis

the noise. We assume that each sourcespw: (s;(1), .., s;(T))
follows a GH distributionH (\;, a5, 85, d;, ;) and that each noise
row n; = (n;(1),..,n;(T)) is white with a variancer;. The
identification problem is very ill posed as tl{ex x n)-mixing
matrix, the sourcesS' and their corresponding hyperparameters
n = (A, o, 85, 05, p15) j=1 are unknown.

The Bayesian formulation is adapted to this ill posed pnoble
as it consistently takes the structure of the observationgss into
account. The noise is explicitly modeled in the inferenaecpss
and any additional prior information can be incorporatedve@
the observationX, thea posterioridistribution of the unknowns
0 = (A, R,,S,n), according to the Bayesian rule is:

p(0| X,I) xp(X | 0,T)p(0 | T), (6)

whereZ contains the prior information such as the noisy model,
the GH density of sources and the whiteness of the noise.

The posterior likelihood (5) incorporates our knowledgelghb
the unknowns, but it does not provide a specific estimatiocgr
dure. In general, expression (5) corresponds to a cometicatul-
timodal function of the parameters. Bayesian sampling isffin
cient tool to tackle this challenging inference problem.r®lece-
cifically, Gibbs sampling is well suited to the separatioakpem.

It produces a Markov chaifi® = (A®) B, ") §() i (&) ()
that converges, in distribution, to tlagposterioridistribution (5).

The formulation of the GH density as a continuous mean-
variance normal mixture leads to an efficient implementatd
the Gibbs sampling as the conditioning of the sources is Saius
and that of the hyperparameters is implementable with ttie ra
method. In the following, we outline the Gibbs sampling sobke
for the source separation problem.

3.1. Gibbsalgorithm

The cyclic sampling steps are as follows:

1. Sample S ~p(S | X,A,RmVVj?)

2. Sample W ~ p(W | 5:, n) 6)
3. Sample n~pn|S,W)

4. Sample (A,R,) ~p(A,R, | X,S)

Given the dataX and the remaining components @f the
sources have temporally independerposteriorimultivariate Gaus-
sian distribution. This is obtained by applying the Bayde:ru

p(S | X,0) oc [N (5 p, (1), s (1))

t=1

The means and covariances of the sources at tilvave the fol-
lowing expressions:

I.(t) = (A*R;'A+ P!

)

p.(t) = Tu(t) [A"Ry @, + Py (i + B 0 wy)]

whereP,, = diag(w-) is thea priori source covariance arid;]+
[8;] © wy is thea priori mean.
The conditioned sampling in the second and third steps of the
Gibbs Algorithm (6), given the sampled sourcgsare the same
as in the previous Section 2. In fact, given the sources, énie v
ancesW and the hyperparametersare independent of the data
X as they are not related to the mixing process. They are patia
independent and, for each compongnt 1..n, the variances row
w; is sampled according to a GIG distribution as in equation (3)
The sampling of the mixing matrix and the covariance matrix
given the data and the sources is the same as in [2]. For a Jef-
frey’s prior (see [11] for details of Fisher matrix compina), the
a posterioridistribution of(A, R;') is Normal-Wishart:

P(AR,) = N(A; Ay, Ta) Win(Ry' 5 vp, By)
with parameters:
vp =T —n,

AP = stR;slv

Fa = %R;sl ® Rny EP = Tin (Rzz - RISR;SIRSI)

where® is the Kronecker product and

1 . 1 . 1 «
Ry = Tzwtwt’ R, = ?Zstwm R, = ?Zstszw

Remark 1 (over-relaxation) The covarianc&™, of the mixing ma-
trix is inversely proportional to the signal to noise ratidn the
case of a high signal to noise ratio, the covariance is verglsm
which leads to a slow convergence of the Markov chain. Inrothe
words, the conditional distribution of the mixing matrix\isry
sharp around a mean value depending on the sampled sourees du
to a high correlation with this latter. The Markov chain iseti
unable to efficiently explore the parameter domain. To tadtkis
problem, a general solution proposed by Adler [12] in the Gau
sian case consists in over-relaxing the chain by introdg@meg-
ative correlation between the updates. If the parametereta
dated@ has a Gaussian distributio'(m, LL*), the retained
value at iterationk is the following:

0% =m + a(m — B(k_l)) + 11— a? Lu,

wherew is a standard Gaussian vector ande [—1 , 0] controls
the degree of over-relaxation.

Remark 2 Formally, the separation method matches the empiri-
cal data covarianceR., to its theoretical expressiod P, A” +
R,, where P, = diag(w,) is the covariance of the non sta-
tionary sources simultaneously updated through the Gitdrsii
tions. This represents an unification between the use ofehigh
order statistics and non stationary second order statsstic

3.2. Simulation Results

In this paragraph, we illustrate the performance of the &#&#pa-

rating algorithm on simulated data, in a very noisy cont@kiree

sources are generated according to the GH model (1). They are
111

artificially mixed by a mixing matrixA* = 19 138 f and cor-

rupted by a white noise such that the SNR is respectivelyt,

4 and2 dB for each of the three detectors. Figure 2(a) shows the

convergence of the empirical sums of the mixing matrix Marko



chains to their true values. Figure 2(b) shows the evolutiba
performance index that evaluates the closeness of thexnpadr-
uct? = A'A* to the identity matrix. Following [13], it is

defined by (wherP approaches the identity matrix, the index con-

verges ta):

o (TR

i J

I 7]

max |Pa|?

[P ?

max [P |?

30>

1)]

The convergence of the empirical mean of the performanaexind
to —20 dB corroborates the effectiveness of the separating algo-

rithm.

In Figure 3, the estimated source log-distributions areesup

imposed to the true sampling distributions. We note the Yésils
and the asymmetry of the distributions and the accuracyeif &s-
timation. In order to quantify the accuracy of the hyperpseters
estimation, different measures of closeness betweenbdistns
are reported in Table 1: Kullback-Leibler divergence, Kotrorov
distance (maximum of the absolute difference between catival
distributions), L1 and L2 distances.
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Fig. 2. (a) Convergence of the empirical means of the mixing co-

efficients Markov chains. (b) Convergence of the logarittrthe
performance index to a satisfactory value of -20 dB.
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Fig. 3. Estimated log densities (in dashed lines) are almostiident

cal to true log densities (in solid lines).

D(p||p*) Source 1 | Source 2 | Source 3
Kullback — Leibler 0.03 0.07 0.04
Kolmogorov 0.01 0.02 0.02
L1 0.04 0.10 0.06
L2 0.02 0.03 0.02

Table 1. The estimated parametajsare close to the true param-
etersn™. Different measures of distribution closeness corrolgorat

the accuracy of the distribution estimation.
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