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Abstract —
The main contribution of this paper is to present a

Bayesian approach for solving the noisy instantaneous blind
source separation problem based on second order statistics
of the time varying spectrum. The success of the blind es-
timation relies on the non stationarity of the second order
statistics and their inter-source diversity. Choosing the time
frequency domain as the signal representation space and
transforming the data by a short time Fourier transform
(STFT), our method presents a simple EM algorithm which
can efficiently deal with the time varying spectrum diver-
sity of the sources. The estimation variance of the STFT
is reduced by averaging across time frequency sub-domains.
The algorithm is demonstrated on a standard functional res-
onance imaging (fMRI) experiment involving visual stimuli
in a block design. Explicitly taking into account the noise
in the model, the proposed algorithm has the advantage of
extracting only relevant task related components and con-
siders the remaining components (artifacts) as noise.

Keywords — Blind Source Separation, EM algorithm,
Short Time Fourier Transform, Maximum Likelihood, fMRI
imaging.

I. Introduction

Since the beginning of the last decade, extensive research
has been devoted to the problem of blind source separation
(BSS). The attractiveness of this particular problem is es-
sentially due to both its applicative and theoretical chal-
lenging aspects. This research has given rise to the devel-
opment of many methods aiming to solve this problem (see
[1,2] for an overview). An interesting aspect of this emerg-
ing field, still open to more research, is the fact that the
theoretical development evolves in pair with the real world
application specificities and requirements. Extracting com-
ponents and time courses of interest from fMRI data [3, 4]
is a representative illustration of this statement. BSS can
be analyzed with two dual approaches: source separation
as a source reconstruction problem or source separation as
a decomposition problem. In the first approach, one as-
sumes that, during an experiment E , the collected data
x1..T = {x1, ..., xT } are not a faithful copy of the original
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process of interest s1..T under study (sources). In other
words, the observed data x1..T are some transformation F
of the sources s1..T corrupted with a stochastic noise n1..T

reflecting either the modeling incertitude or the superposi-
tion of real undesirable signals:

x1..T = F(s1..T ) � n1..T ,

where � is the operator modeling the noise superposition.
Given the data x1..T , our objective is the recovery of the
original sources s1..T . The second approach for dealing
with the source separation problem is to consider it as
a decomposition on a basis enjoying some particular sta-
tistical properties. For instance, PCA (Principal Compo-
nent Analysis) relies on the decorrelation between the de-
composed components and ICA (Independent Component
Analysis) relies on their statistical independence. The de-
composition approach can be considered as dual to the re-
construction approach (see Figure 1) as the existence of an
original process is not required.

Reconstruction Decomposition
XS Y

Fig. 1. Duality of reconstruction and decomposition approaches

In this paper, we consider the reconstruction approach
with the noisy linear instantaneous mixture:

xt = Ast + nt, t = 1, ..., T,

The challenging aspect of the BSS problem is the absence
of any exact information about the mixing matrix A.

Based on i.i.d source modeling, many proposed algo-
rithms are designed to linearly demix the observations
x1..T . The separation principle in these methods is based
on the statistical independence of the reconstructed sources
(Independent Component Analysis) [5–9]. However, ICA
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is designed to efficiently work in the noiseless case. In addi-
tion, with the i.i.d assumption, the separation necessarily
relies on high order statistics and treating the noisy case
with the maximum likelihood approach leads to compli-
cated algorithms [10–12].

Discarding the i.i.d assumption, source separation can
be achieved with second order statistics. For instance, sec-
ond order correlation diversity in the time domain [13],
frequency domain [14] or time frequency domain [15] are
successfully used to blindly separate the sources. Non sta-
tionary second order based methods are also proposed in
[16–20] (see [21] and the references therein for a synthetic
introduction of these concepts). Stationarity and non sta-
tionarity can approximately be seen as dual under Fourier
transformation. For instance, based on the circular ap-
proximation, it is shown [22] that a finite sample corre-
lated temporal stationary signal has a Fourier transform
with non stationary decorrelated samples. We have re-
cently proposed a maximum likelihood method to sepa-
rate noisy mixture of Gaussian stationary sources exploit-
ing this temporal / spectral duality [23, 24]. The Gaus-
sian model of sources allows an efficient implementation
of the EM (Expectation-Maximization) algorithm [25]. In
this contribution, we extend this approach to deal with
non stationary sources and a limited sample size of col-
lected observations. Relying on the maximum likelihood
principle and the Short Time Fourier Transform (STFT),
our approach can be interpreted as a matching between a
smoothed estimate of the spectrum of the observations and
the theoretic structured spectrum arising from the mixture
structure of data. Thus, we improve the previously pro-
posed method [23, 24] not only by extending to time vary-
ing spectrum matching but also by regularizing (smooth-
ing) the data spectrum. This regularization is of capital
importance when the number of data is limited as in some
fMRI experiments where the sample size corresponds to the
duration of the scanning.

Our statistical spectral approach is different from the
work proposed in [15] which is based on the joint diagonal-
ization of several observations ambiguity matrices. In fact,
our method is based on the maximum likelihood principle
which is flexible to incorporate, using the Bayesian rule,
any prior information about the mixing operator and the
source spectra. Taking into account, in a consistent way,
the prior information can be seen as a regularization of the
source separation problem in difficult situations as in the
underdeterminate, noisy, convolutive or time varying mix-
tures. Our method is based on the estimation of the mixing
matrix, the source spectra and the noise covariance matrix.
Thus, the same algorithm is applied to overdeterminate and
underdeterminate cases without a prewhitening step. The
method implicitly incorporates a denoising procedure and
it is consequently robust to high level noise. The equations
involved in the EM algorithm are very simple to imple-
ment. An interesting property of the proposed solution is
the exploitation of second order spectral non stationarity.
In addition, by partitioning the time frequency plane into
horizontal bands, the marginal spectrum (integrating over

time the spectrograms) corresponds to an improved ver-
sion of the separation of noisy stationary sources [23]. In
fact, the smoothed periodograms, obtained by marginaliza-
tion, are used instead of the empirical periodograms (cor-
responding to the Wigner-Ville distribution marginals).

The paper is organized as follows. In Section II, we
briefly recall the maximum likelihood separation of noisy
stationary sources. Section III is devoted to the main con-
tribution of this paper. We develop the EM algorithm im-
plementing the maximum likelihood solution in the time
frequency domain. The ML criteria is interpreted as a
Kullback-Leibler matching between smoothed Wigner-Ville
spectra. We show how spectral non stationarity exploita-
tion can be obtained by marginalizing the STFT repre-
sentation. In Section IV, application to real fMRI signals
illustrates the effectiveness of our proposed method com-
paring to the ICA solution.

II. Stationary case

In this section, we recall the basics of the separation
of noisy stationary sources and why the spectral domain
is very appropriate in this case. An improvement of this
method, based on marginalizing the time frequency spec-
trum, even in the stationary case, will be presented in sec-
tion III.

We consider the noisy linear instantaneous mixture
model1:

xt = Ast + nt, (1)

where xt is the (m×1) vector of observations at the time t,
st is the (n× 1) vector of sources, A is the (m×n) mixing
matrix and nt the noise vector assumed to be white and
stationary (with unknown covariance Rε).

A useful approximation is to consider the covariance ma-
trix Σ of a stationary signal x1..N = [x1, ..., xN ] (for each
channel) as circular. This approximation consists in circu-
larizing the raw vector x1..N (see Figure 2). Then, the ma-
trix Σ can be diagonalized in the Fourier basis with eigen-
values coinciding with the spectrum of the signal x1..N :

Σ ≈ F
∗∆F , ∆ =








σ2
1

σ2
2

. . .

σ2
N








(2)

where ”∗” denotes the conjugate transpose and ”T ” denotes
the transpose. F is the Fourier matrix:

{Fik = exp [−2 j π(i − 1)(k − 1)/N ]}k=1..N

i=1..N

As a consequence of equation (2), Fourier transforming
the signal (x̃1..N = x1..N F T ) leads to a decorrelated signal
with a diagonal covariance equal to the spectrum of the
signal. Considering only the second order statistics, this
is equivalent to a non stationary white Gaussian process.
If the signal x1..N is initially stationary white, then the

1Unless explicitly specified, the mixture is considered noisy linear
instantaneous with no restriction to either overdeterminate or under-
determinate cases.
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spectrum is constant. However, if the signal x1..N has a
correlation structure, the spectrum is non constant. This
idea is exploited in the next paragraph II-A, to blindly
estimate the mixing matrix, the source spectra and the
noise covariance.

A. Maximum Likelihood Criteria

Transforming the data by Fourier decomposition, the
mixture model, at each Fourier mode k of the spectral do-
main, is,

x(k) = As(k) + n(k)

where, for the sake of clarity, we use the same notation
for the Fourier transformed variables. In the following, by
x1..N and s1..N we refer to the whole sample of transformed
observations and sources.

The sources are modeled by a non stationary white
Gaussian process (real and imaginary components are in-
dependent). At each frequency k, the sources sk has a
zero mean Gaussian distribution with diagonal covariance
Pk = E [sk s∗

k] (the diagonality reflects the source indepen-
dence),

sk ∼ N (0, Pk).

The diagonal elements [Pcc(k), k = 1..N ] of the matri-
ces Pk are the power spectra of the sources. The noise
is assumed to be zero mean white Gaussian with constant
spectrum Rε = E [nkn∗

k]. We also assume that the matrix
Rε is diagonal and that the diagonal elements may have
different values (different noise detector levels).

We consider the maximum likelihood approach to jointly
estimate the mixing matrix A, the source spectral densi-
ties Pk and the noise covariance Rε, based on the mixture
model (1) and the stationarity property:

(Â, R̂ε, {P̂k}) =
argmax

A,Rε,{Pk}

p(x1..K | A, Rε, {Pk})p(A, Rε, {Pk})

where p(A, Rε, {Pk}) contains the a priori information
about the parameters to estimate.

The gaussianity (in other words, the restriction to second
order statistics) and the spectral independence of sources
and noise lead to explicit expression of the likelihood of
θ = (A, Rε, {Pk}):

p(x1..N | θ) =

Z

p(x1..N | s1..N , A, Rε)p(s1..N | P1..N )d s1..N

=
Y

k

Z

p(xk | sk, A, Rε)p(sk | Pk)d sk

=
Y

k

|2 π Rk|
−1 exp

h

−Tr
“

R
−1
k

xkx
∗

k

”i

.

(3)

where Rk = APkA∗ +Rε is the spectral covariance ma-
trix of the observations xk at the mode k.

Thus, the method is implemented in the spectral do-
main exploiting the decorrelation property (circular ap-
proximation) and the spectral diversity of the sources [23],
[24], [26]. The optimization is performed by an EM algo-
rithm as the parameter identification can be described as
an incomplete data problem, where x1..K are considered as
incomplete data and s1..N are considered as hidden vari-
ables. As it will be shown later, the EM algorithm yields,
implicitly, the Wiener filtering of the sources. Therefore,
after convergence, we have an estimation of the parame-
ter θ = (A, Rε, {Pk}) and a reconstruction of the sources
s1..N .

B. Interpretation of the ML criteria

We note that the number of the power spectrum coef-
ficients P1..N to be estimated is N , the size of the whole
sample. For this reason, we partition the spectral inter-
val [1..N ] into L sub-intervals {Dl}L

l=1 (as in the noise-
less case [20]). The choice of this partition depends on
some a priori knowledge about the source components
(see Figure 3). Then, we reduce the number of spec-
tral coefficients to be estimated to L. Consequently, the
observation covariance is constant in each sub-interval:
Rk = Rl = APlA

∗ + Rε, ∀k ∈ Dl.

The likelihood expression (3) can be rewritten by re-
partitioning the modes,

p(x1..K | θ) =

L∏

l=1

|2 π Rl|
−wl exp

[

−Tr

(

R
−1
l

∑

k∈Dl

xkx
∗
k

)]

(4)
where wl = |Dl| is the number of modes belonging to the
sub-interval Dl.

Introducing the empirical observation covariances R̂l =
∑

k∈Dl

xkx
∗
k

/
wl, the log-likelihood can be considered as a

weighted sum of Kullback-Leibler divergences between the
structured spectral theoretical covariance and the spectral
empirical covariance of the sub-intervals Dl [20]:

log p(x1..K | θ)=−
L

X

l=1

wl

“

− ln |R−1
l

R̂l| + Tr
“

R
−1
l

R̂l

”

− Nd

”

+ const

=−
L

X

l=1

wlDKL(Rl, R̂l) + const.

(5)

l = 1

Dl

l = L

k

Fig. 3. Partition of the spectral domain to sub-intervals. In each
interval Dl, the source spectra is constant. The maximum likeli-
hood criteria is a matching between the spectral covariances.
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Fig. 2. The circular approximation consists in circularizing the vector x1..N . For instance, the 1-lag correlation r1 = E[X1 X2] is equal to
E[XN X1].

The maximum a posteriori criteria can be considered,
in turn, as a penalized version of the spectral covariance
matching:

log p(θ | x1..K)= −
L∑

l=1

wlDKL(Rl, R̂l)

︸ ︷︷ ︸

Matching of spectral covariances

+ log p(θ)
︸ ︷︷ ︸

Regularization

+const.
(6)

This separation method is then based on spectral second
order statistics. It exploits the spectral non stationarity to
estimate the mixing matrix. It is a generalization of the
approach adopted in [20] where the authors consider the
noiseless case. However, the specificity of the likelihood-
based formulation is the exploitation of the hidden struc-
ture of the mixture model in order to use the EM algorithm.
Therefore, it is based on a statistical approach and inherits
the nice properties of the maximum likelihood estimator as
the consistency and the efficiency in the asymptotic regime.

III. Non stationary case

Some of the real signals collected in fMRI imaging are
obviously non stationary. The difficulties thus arising when
applying the spectral matching algorithm [23] to separate
the different temporal brain activations are the following:

1. The observations are mixture of two types of sources:
stationary sources (task related activations, thermal
noise,...) and non stationary sources (artifacts).
2. The moderate time duration of scanning, in some exper-
iments, within the limited spectral information provided by
time courses make the blind mixing identification a diffi-
cult task. In fact, the success of blind separation relies on
a good spectral estimation since it is based on structuring
the observation covariance matrices according to the linear
mixing model.

In order to alleviate the difficulties mentioned above, we
have extended the spectral EM algorithm to deal with time
varying source spectra. A suitable partition of the time
frequency domain leads to a consistent regularization of
the estimated spectra. The regularization is performed
by windowing the estimated periodograms. Within this
extension, a simple EM algorithm is proposed and called
hereafter the ”Regularized Spectral EM”. It keeps a sim-
ple form as in [24] and has a double interpretation as the
matching of smoothed spectral covariances in the Kullback-
Leibler metric and as the maximum likelihood solution
when we adopt a Short Time Fourier Transform (STFT)
representation of the signals.

A. Time dependent spectra

In the non stationary case, the correlation function de-
pends on two variables and its general form is (in the fol-
lowing, we assume that the signals are zero mean):

rx(t1, t2) = E
[
xt1xt2

]
=

∫

Px(ω1, ω2)e
j(ω1 t1−ω2 t2)dω1dω2,

where Px(ω1, ω2) also represents the correlation of the spec-
tral increments which are no more uncorrelated.

The Wigner-Ville spectrum, defined as follows:

Wx(t, ω) =

∫ ∞

−∞

rx(t + τ/2, t − τ/2)e−jωτd τ, (7)

is an intermediate representation between rx and Px which
mixes time and frequency and thus reflects the notion of
time dependent spectrum. In addition, the Wigner-Ville
spectrum has many advantages as covariance to time and
frequency shifts, real values range and marginal properties
[27]:

∫ ∞

−∞

Wx(t, ω)d t = Px(ω, ω),
∫ ∞

−∞

Wx(t, ω)dw = rx(t, t) = var{x(t)},
(8)

Based on the only shift covariance property, a more general
class of time dependent spectrum generalizing the Cohen’s
Class for random signals is:

Cx(t, ω, φ) =

∫ ∞

−∞

∫ ∞

−∞

φ(t − u, ω − v)Wx(u, v)d u
d v

2π
(9)

the convolution of the Wigner-Ville spectrum by the 2-D
kernel φ.

B. Maximum Likelihood Separation

The Short Time Fourier Transform (STFT) of a signal
{x(t)} is a windowed Fourier transform defined as:

Sx(t, ω) =

∫

x(τ)h(τ − t)e−jωτd τ

where h is the moving window capturing the signal non
stationarity. It is shown that the squared modulus of Sx

(called the spectrogram) belongs to the Cohen’s Class with
the kernel φ equal to Wh, the Wigner-Ville distribution of
the window h [27]. Thus, the spectrogram enjoys the pos-
itivity property but does not conserve the marginal prop-
erties (8) of the Wigner-Ville distribution.

Exploiting the linearity of the STFT transform, the noisy
linear mixture model (1) conserves its algebraic form under
this transformation:

x(t, ω) = As(t, ω) + n(t, ω), t = 1..T, ω = 1..F,
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where, for the sake of clarity, x, s and n denote also
the STFT transforms of the observations, the sources and
the noise respectively. Assuming that the noise is sta-
tionary white (with unknown covariance Rε) and that
the sources are decorrelated in the time frequency do-
main2 (with unknown diagonal covariances {P (t, ω) =
E
[
s(t, ω)s(t, ω)∗

]
}ω=1..F

t=1..T ), the likelihood is as follows:

p(X | θ) =

∫

p(X | S, A, Rε)p(S | {P (t, ω)})d S

=
∏

t,ω

∫

p(x(t, ω) | s(t, ω), A, Rε)p(s(t, ω) | P (t, ω))d s(t, ω)

=
∏

t,ω

|2 π Rt,ω|
−1 exp

[
−Tr

(
R

−1
t,ω x(t, ω)x(t, ω)∗

)]
,

(10)
where Rt,ω = APt,ωA∗ +Rε and θ is the whole parameter
to be estimated (A, Rε, {P (t, ω)}).

It is worth noting that the achievement of the separation
solution is strongly linked to the diversity of the sources
spectrograms (the diagonal time frequency distributions of
the matrices P (t, ω) are different). This is the fundamen-
tal reason to perform the separation in the time frequency
domain when the only spectral and temporal statistics are
not able to provide such diversity.

The likelihood (10) can still be interpreted as the match-
ing between STFT covariances matrices Rt,ω = APt,ωA∗+

Rε and empirical covariances R̂t,ω = x(t, ω)x(t, ω)∗, in the
Kullback-Leibler metric:

log p(X | θ) = −
∑

t,ω

DKL(Rt,ω , R̂t,ω) + const. (11)

C. Time frequency EM algorithm

In spite of its explicit analytic form, the likelihood func-
tion (11) is difficult to optimize. However, we can make use
of the hidden variable structure of the problem (the sources
are the hidden variables) to implement the EM algorithm
[25]. The EM algorithm has an iterative scheme. At the
iteration m, it consists of two steps: (E) Expectation and
(M) Maximization.

The first step of the EM algorithm is the computation of

the functional Q(θ, θ(m−1)) as the a posteriori expectation
of the complete log-likelihood log p(X, S | θ):

Q(θ, θ(m−1)) = E
ˆ

log p(X, S | θ) | X, θ(m−1)
˜

= E
ˆ

X

t,ω

− log |Rε| − Tr
`

R
−1
ε [xt,ω − Ast,ω ] [xt,ω − Ast,ω ]∗

´

+
X

t,ω

− log |Ps(t, ω)| − Tr
`

P
−1
s (t, ω) [st,ω] [st,ω ]∗

´˜

where the expectation is computed according to the a pos-

teriori distribution of the sources (p(S | X, θ(m−1))).

2The decorrelation assumption of the time frequency source points
is only statistically valid for underspread signals, i.e. the ambigu-
ity function is concentrated in a small neighborhood of the origin
[28]. However, our main objective is the estimation of the unknown
parameters and not the filtering of sources.

Defining the following statistics which will be computed
later:







Rxs(t, ω) = xt,ωE
[
st,ω | xt,ω, θ(m−1)

]∗

Rss(t, ω) = E
[
st,ωs∗

t,ω | xt,ω, θ(m−1)
]

(12)

the functional Q can be rewritten in the following form:

Q(θ, θ(m−1)) =
∑

t,ω

− log |Rε| − Tr(R−1
ε [R̂t,ω

+ARss(t, ω)A∗ − ARsx(t, ω) − R∗
sx(t, ω)A∗])

+
∑

t,ω

− log |Ps(t, ω)| − Tr
(
P

−1
s (t, ω)Rss(t, ω)

)

(13)

The second step is the update of the parameter θ by
maximizing the functional Q(θ, θ(m−1)):

θ
(m) = argmax

θ

Q(θ, θ(m−1))

This can be achieved by differentiating the functional Q
(13) with respect to the parameter θ and then equating to
zero. The partial derivatives have the following expression:

∂Q
∂A

=−2 R−1
ε

∑

t,ω

(ARss(t, ω) − Rxs(t, ω))

∂Q
∂Rε

=−
∑

t,ω

[R−1
ε − R

−1
ε (R̂t,ω + ARss(t, ω)A∗

−ARsx(t, ω) − R∗
sx(t, ω)A∗)R−1

ε ]

∂Q
∂Ps

=−(P−1
s − P−1

s Rss(t, ω)P−1
s )

leading to the following simple updating equations:







A(m) = RxsR
−1
ss

R
(m)
ε = Rxx − RxsR

−1
ss Rsx

diag(Ps(t, ω)) = diag(Rss(t, ω))

(14)

where the matrices Rxx, Rxs and Rss are the average of the
statistic matrices R̂t,ω, Rxs(t, ω) and Rss(t, ω) defined in
(12), over the time frequency domain. The matrix Ps(t, ω)
is diagonal.

The computation of the statistic matrices (12) is essen-
tially based on the computation of the a posteriori first
and second moments of the source vector st,ω. Thanks to
the a priori Gaussianity of sources and noise, the a poste-

riori distribution of the sources is also Gaussian with the
following moments:

{
E
[
st,ω

]
= Wt,ωxt,ω

E
[
st,ωst,ω

]
= Vt,ω + E

[
st,ω

]
E
[
st,ω

]∗

where the matrices Wt,ω (Wiener matrix) and Vt,ω (a pos-

teriori covariance) have the following expressions [23]:

{

Wt,ω =
[
A∗R−1

ε A + P−1
s (t, ω)

]−1
A∗R−1

ε

Vt,ω =
[
A∗R−1

ε A + P−1
s (t, ω)

]−1
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We note that the equations are very similar to a time fre-
quency Wiener filtering. Consequently, the EM algorithm
involves an implicit denoising procedure when computing
the first a posteriori moment of the sources. In other words,
we have an optimal source reconstruction at each step of
the algorithm.

D. Regularized Spectral Matching

The estimation of the parameter θ involves the estima-
tion of the whole spectrograms ({Ps(t, ω)}ω=1..F

t=1..T ) which
are smoothed versions of the Wigner-Ville spectra. In or-
der to accelerate the EM algorithm, we can generalize the
procedure presented in the previous Section II to partition
the time frequency domain into L sub-domains {Dl}

L
l=1 and

then estimate the averaged spectrograms inside these do-
mains. This is algorithmically equivalent to assume that
the spectrograms are constant in the sub-domains in the
partitioned time frequency 2-D field. The partition is based
on some a priori information about the signals under hand.
An interesting particular case is partitioning the time fre-
quency plane into horizontal bands. Figure 4 illustrates a
general partitioning and the segmentation of the time fre-
quency domain into horizontal bands. In the following, we
show how the expressions of the updating equations of the
EM algorithms are very suitable for such approximation
(for a general partition).

We assume that Ps(t, ω) = Pl for all (t, ω) ∈ Dl and the
likelihood function can be rewritten as follows:

p(X | θ) =
L∏

l=1

|2 π Rl|
−wl exp−Tr



R
−1
l

∑

(t,ω)∈Dl

xt,ωx
∗
t,ω





(15)
where wl = |Dl| and Rl = APlA

∗ + Rε which is constant
in the sub-domain Dl.

As the spectral coefficients are constant in each sub-
interval Dl, the statistics are easily computed. In fact,
the matrices Vt,ω = Vl and Wt,ω = Wl are constant over
each sub-domain Dl and the statistics are:







R̂(l) = 1
wl

∑

(t,ω)∈Dl

xt,ωx
∗
t,ω −→ computed off line

Rxs(l) = R̂(l)W ∗
l

Rss(l) = WlR̂(l)W ∗
l + Vl

(16)
Then, the statistic matrices Rxx, Rxs and Rss are the
weighted sums of R̂(l), Rxs(l) and Rss(l) (with weights
{wl}l=1..L) and both the mixing matrix A and the noise
covariance Rε are still updated according to the equation
(14). The diagonal sources spectrograms Pl are updated
according to the following equation:

diag(Pl) = diag(Rss(l))

Remark 1: An interesting property of the EM algorithm
is the fact that the computation of the statistic matrices
Rxs(l) and Rss(l) relies on an off-line computation of the

observations spectrograms R̂(l). The computation of the
a posteriori expectation of sources is no more necessary
leading to a fast implementation of the EM algorithm.

Partitioning the time frequency domain into horizontal
bands, the algorithm implementing the matching of the
STFT spectra has the same structure as in [23] but with
covariances computed from the projection of the spectro-
grams onto the spectral axis. In fact, the projection of the
STFT spectrum yields the windowed power spectrum. In
Figure 5, we have plotted an fMRI time course in time,
its spectrum, its STFT transform and the windowed pe-
riodogram (projection of the spectrogram) illustrating the
effect of smoothing the spectrum of an fMRI time course.
Maximizing the likelihood is then equivalent to matching
the windowed periodograms according to equation (11).
Thus, the method will essentially consist in maximizing
the likelihood of the parameters based on the Gaussian
modeling of the sources.

As the computation of the observations spectra is per-
formed off-line, the structure of the algorithm is indepen-
dent of the partition choice. In fact, the algorithm is only
based on matching the computed matrices to structured
matrices according to the mixture model. Hereafter the
pseudo code of the Regularized Spectral EM algorithm:

Regularized Spectral EM
1 : Initializing:

2 : Fixing a partition{Dl}
L
l=1

3 : Off line computation of the smoothed

covariances R̂(l)
4 : Initial values for A, Rε and Pl

5 : repeat until convergence,

6 : //----- E-step -----//

7 : computation of statistics for l=1 to L,

8 : Vl =
“

AR
−1
ε A∗ + P

−1
l

”

−1
, Wl = VlA

∗R
−1
ε

9 : Rxs(l) = R̂(l)W∗

l

10 : Rss(l) = WlR̂(l)W∗

l
+ Vl

11 : end of loop on l,

12 : Rxs = 1
L

X

wl Rxs(l)

13 : Rss = 1
L

X

wl Rss(l)

14 : //------M-step------//

15 : A = RxsR
−1
ss

16 : Rε = diag(Rxx − RxsR
−1
ss R∗

xs)
17 : Pl = diag(Rss(l)), for l=1 to L
18 : Renormalize A and Pl

19 : end of repeat

(17)

IV. Illustration on fMRI data

The Regularized Spectral EM algorithm was applied to
separate the time courses of fMRI data acquired at the
FM Kirby Center for Functional Brain Imaging. The ex-
periment consisted of presenting two periodic visual stim-
ulus, shifted by 20 s from one another, to the subject. The
stimuli consisted of an 8-Hz reversing checkerboard pattern
presented for 15 s in the right visual hemifield, followed by
5 s of an asterisk fixation, followed by 15 s of checkerboard
presented to the left visual hemifield, followed by 20 s of
an asterisk fixation. The 55 s set of events was repeated
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four times for a total of 220 s. Scans were acquired on
a Philips NT 1.5-Tesla scanner. A sagittal localizer scan
was performed first, followed by a T1-weighted anatomic
scan [repeat time (TR) = 500 ms, echo time (TE)= 30 ms,
field of view = 24 cm, matrix = 256 × 256, slice thickness
= 5 mm, gap = 0.5 mm] consisting of 18 slices through the
entire brain including most of the cerebellum. Next, we ac-
quired functional scans over the same 18 slices consisting
of a single-shot, echo-planar scan (TR=1 s, TE= 39 ms,
field of view = 24 cm, matrix= 64 × 64, slice thickness =
5 mm, gap = 0.5 mm, flip angle = 90 degrees) obtained
consistently over a 3-min, 40-s period for a total of 220
scans.

Our method is tested on a single-subject data. It is ap-
plied on two different slices where we expect, in each, two
different task related components corresponding to the al-
ternating activation of the right and left visual cortex as
a response to an alternating visual stimulus presented to
the subject. The temporal fMRI separation relies on the
following mixing model:

X = AS + N

where X is the (M × T ) matrix of observations, the col-
umn X(:, t) contains the scanned image acquired at the
time t and M is the number of voxels in one brain slice.
The (N × T )-matrix S contains the N time courses rows.
The matrix N models the noise corrupting the observa-
tions. The advantage of taking into account the noise in
the model is to allow the separating algorithm to only ex-
tract the relevant components. This is possible when the
spectral profile of the noise is flat comparing to the more
concentrated component spectra. In fact, the time courses
of task related activations present the same frequency con-
tent as the stimulus.

The results of the proposed algorithm applied to the
first data set (slice 10) are shown in Figure 6, where we
have plotted three recovered image components (the three

columns of the estimated mixing matrix Â) within their
corresponding estimated time courses. We note the abil-
ity of the algorithm to extract the components which have
a time course correlated with the stimulus. The first and
third components correspond to the alternative activations
of the right and left visual cortex as expected from the con-
ditions of the stimulus presented to the subject. However,
the algorithm extracts also another component (the second
one) which has a spectral density similar to the first two
components. This shows that fixing the number of com-
ponents by intuitive expectation (2 components) based on
the experiment paradigm leads to wrong results. In fact,
fixing the number of components to 2, the Regularized EM
algorithm yields a component consisting of a mixture of the
right visual cortex activation and a transient signal. The
right visual cortex activation is not thus well extracted.
The results shown in Figure 6 were obtained by varying the
number of components and then studying a posteriori the
results after convergence of the EM algorithm. An auto-
matic selection of the number of components is thus needed
for a complete blind analysis of the fMRI data. We discuss

this point later in Section VI. Figure 7 illustrates the times
courses of the right and left visual cortex regions. We note
the periodicity of the time courses and their relative inter-
delay (around 20 s) corresponding to the inter-delay of the
stimulus (the checkerboard pattern was presented alterna-
tively to the right and left visual hemifields). Figure 8
shows the spectrograms and the regularized spectra of the
estimated three times courses. For comparison purposes,
we reported the separation results of a temporal ICA In-
foMax algorithm on the same data set, in Figure 9. We
have fixed the number of components to 3. The ICA al-
gorithm fails to extract the third component from the two
alternative task related components identified with the EM
algorithm, mixing them with a higher frequency compo-
nent. In order to take into account the noise component
in the InfoMax method, we have also fixed the number of
components to 4. Figure 10 illustrates the extracted com-
ponents. The first and fourth components correspond to
the left and right visual cortex activations. However, the
remaining two components contain a mixture of the tran-
sient signal and the right visual cortex activations. The
noise is not extracted in an independent component but
seems to be spread in components 2, 3 and 4.

In Figure 11, the results are plotted for the slice 14 char-
acterized by a higher noise level than the previous slice.
We note the ability of the algorithm to recover the com-
ponents as well. For this slice, we have processed only 110
timepoints as the acquisition rate was divided by 2 in the
same experiment conditions as the data acquisition for the
slice 10. Figure 12 illustrates the estimated time courses.
We note their correlation with the expected activations of
the brain as a response to the presented stimulus. The
time delay is about 10 timepoints corresponding to the 20
s of the shift between the alternative periodic right and
left visual stimulus. The ability of the algorithm to extract
the components is then unaltered by dividing the sample
size by two. The InfoMax ICA algorithm gives poor results
(Figure 13) essentially because of the presence of noise in
the processed data. This is to be expected as, in the ICA
solution, we assume a noiseless observation model.

V. Conclusion

We have presented the extension of the Spectral EM al-
gorithm to deal with real data suffering from non station-
arity and a lack of enough points for spectral analysis. The
separation method is essentially based on the diversity of
the source smoothed periodograms. The non stationarity
of second order statistics allows the mixing matrix identi-
fication without resorting to higher order statistics. The
use of second order statistics (in other words, the Gaus-
sian modeling) leads to an efficient and fast implementa-
tion of the EM algorithm. In fMRI data analysis, we have
exploited this diversity between the time course spectra.
The spatial pixel distributions represent the columns of the
mixing matrix. Therefore, the Regularized Spectral EM al-
gorithm allows a blind joint estimation of the brain source
images within the spectra of their time courses. The task
related sources are easily distinguished by the signature of
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the stimulus in their time course spectra.

VI. Perspectives

We have not yet exploited another powerful feature of the
Bayesian approach which is the incorporation of prior in-
formation into the inference process. Hereafter, we briefly
outline how to incorporate such prior information.

As our method is based on the identification of the spec-
tral structure of the covariance matrices, one can take ad-
vantage of some prior information about the task related
time course spectrum. In fact, this later reflects the spec-
tral information of the stimulus presented to the subject
during the scanning. This can be consistently performed
by constructing a prior function p(Pk) and then optimize
the penalized criteria:

log p(A, Pk, Rε | x1..N ) =

−
L∑

l=1

wlDKL(Rl, R̂l)

︸ ︷︷ ︸

Matching of spectral covariances

+ log p(Pk)
︸ ︷︷ ︸

Regularization

+const.

(18)

In a previous work [29], we have presented a theoreti-
cal rule to automatically construct an uninformative prior
based on information geometry [30]. Let Pref a reference
spectrum (e.g. that of the stimulus), an uninformative
prior in the 0-geometry is an Inverse Wishart prior on the
spectra P :

p(P | Pref ) = IW(P ; ν, Pref )

∝ |P |−
ν−(n+1)

2 exp
[
− ν

2Tr
(
P−1Pref

)]

where ν is the degree of freedom and reflects the confidence
degree in the reference spectra. An important feature of
the Inverse Wishart prior is the fact that the update equa-
tions of the EM algorithm keep the same form as in (17).
Consequently, the maximum a posteriori solution (mini-
mization of the penalized cost function) shares the same
implementation efficiency of the maximum likelihood solu-
tion. We are testing this modified version and results will
be reported in a forthcoming paper.

In the proposed method, we have fixed the number of
sources n according to what we expect from the specificity
of the stimulus presented to the subject during the ex-
periment. For an unconstrained analysis, this subjective
choice is considered as a limitation. The intuitive expec-
tation from the experiment paradigm could be wrong. For
instance, in the experiment presented in Section IV, we
have expected two relevant sources matching the alternat-
ing left and right stimulus presented to the subject during
scanning. However, by varying the number of sources and
running the algorithm, we have identified a third task re-
lated source (see Figure 6). Thus, an automatic and ob-
jective estimation of the number of sources is certainly an
important direction of research in Blind Source Separa-
tion in general and for fMRI data analysis in particular.
Fortunately, the Bayesian framework allows a consistent

incorporation of the number of sources in the problem for-
mulation as a random variable n. Let p(n | I) be a prior
on the random variable n. I represents all our prior infor-
mation. A consistent estimation of n can be performed by
maximizing its a posteriori marginal probability3. The a

posteriori marginal probability p(n | X, I) is obtained by
integrating over the parameter θ = {A, Rε, {Pk}}:

p(n | X, I) =

∫

θ

p(n, θ | X, I)d θ

=

∫

θ

∫

S

p(n, θ, S | X, I)d S d θ

(19)

Computation of the integrals in the expression (19) is in-
tractable. However, Bayesian sampling technics such as
the Reversible Jump MCMC [31] are well suited to the
data augmentation structure of our problem. It consists in
sampling the parameter θ and the sources S in a Gibbs
cyclic way with a random additional step of birth or death
of a source component. We are still exploring this Bayesian
sampling technic.
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Fig. 4. (a) General partitioning of the time frequency domain, (b)
marginal partitioning of the Time Frequency domain into hori-
zontal bands: exploitation of the spectral non stationarity.
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Fig. 5. Time frequency behavior of fMRI time courses (the sample
size is 220s, a Hamming window with length 64s and spacing 4s
is used, only the half of the frequency range is shown): (a) fMRI
time course corresponding to the right visual cortex activation,
(b) artifact related fMRI time course. The projection of STFT
signal transform has a smoothness effect on the spectrum.
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Fig. 6. The recovered components with the Regularized Spectral EM
algorithm for slice 10. The first and third components correspond
to the left and right visual cortex activations.
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Fig. 7. The recovered time courses with the Regularized Spectral
EM algorithm. Their temporal inter-delay is about 20 s corre-
sponding to inter-delay between the alternative temporal stimu-
lus presented to the subject.
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Fig. 8. The spectrograms of the estimated time courses (the sample
size is 220s, a Hamming window with length 64s and spacing 1s is
used, only the half of the frequency range is shown): First, third
and second according to the ordering in Figure 6.
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Fig. 9. The recovered components with the ICA InfoMax algorithm
for the Slice 10. The alternative task related components are not
separated from the transient signal (the image in the middle of
the Figure 6).
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Fig. 10. The recovered components with the ICA InfoMax algorithm
for the Slice 10. The number of components is set fixed to 4 in
order to take into account the noise.

315.35

0 220s 0 220s 0 220s 

Fig. 11. The recovered components with the Regularized Spectral
EM algorithm for the slice 14. The first and second components
correspond to the right and left visual cortex.
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Fig. 12. The recovered time courses with the Regularized Spectral
EM algorithm. We note the periodicity and the inter-delay com-
patible with the periodicity and the inter-delay of the alternative
left and right stimulus presented to the subject during scanning.
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Fig. 13. The recovered components with the ICA InfoMax algorithm
for the slice 14 in a high noise environment. The components
are not identified.


