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ABSTRACT
This paper deals with the problem of blind source separation in
fMRI data analysis. Our main contribution is to present a maxi-
mum likelihood based method to blindly separate the brain acti-
vations in an fMRI experiment. Choosing the time frequency do-
main as the signal representation space, our method relies on the
second order statistics and exploits the inter-source diversity. It
is efficiently implemented by the EM (Expectation-Maximization)
algorithm where the time courses of the brain activations are con-
sidered as the hidden variables. The estimation variance of the
STFT (Short Time Fourier Transform) is reduced by averaging
across time frequency sub-domains. The successful separation of
the right and left visual cortex activations during a visual fMRI
experiment, in a block design, and the extraction of only the rele-
vant tasks corroborate the effectiveness of our proposed separating
algorithm.

1. INTRODUCTION

Independent Component Analysis (ICA) consists in linearly demix-
ing a set of observed data. The separation principle in this method
is based on the statistical independence of the reconstructed sources
[1]. However, ICA is designed to efficiently work in the noiseless
case. In addition, with the i.i.d assumption in source modeling,
the separation necessarily relies on high order statistics and treat-
ing the noisy case with the maximum likelihood approach leads to
complicated algorithms [2].

Discarding the i.i.d assumption, blind source separation can
be achieved with second order statistics. For instance, second or-
der correlation diversity in the time domain, frequency domain or
time frequency domain [3] are successfully used to blindly sepa-
rate the sources. Non stationary second order based methods are
also proposed in [4]. Stationarity and non stationarity can approx-
imately be seen as dual under Fourier transformation. We have re-
cently proposed a maximum likelihood method to separate noisy
mixture of Gaussian stationary sources exploiting this temporal /
spectral duality [5]. The Gaussian model of sources allows an ef-
ficient implementation of the EM algorithm [6]. In this contribu-
tion, we extend this approach to deal with non stationary sources.
Relying on the maximum likelihood principle and the Short Time
Fourier Transform (STFT), our approach can be interpreted as a
regularized blind identification of the sources spectra. Our method
is based on the estimation of the mixing matrix, the sources spec-
tra and the noise covariance matrix. Thus, the same algorithm is

applied to over-determinate and underdeterminate cases without
a prewhitening step. The method implicitly incorporates a denois-
ing procedure and it is consequently robust to high level noise. The
equations involved in the EM algorithm are very simple to imple-
ment. An interesting property of the proposed solution is the ex-
ploitation of second order spectral non stationarity. The frequency
marginal spectrum (integrating over time the spectrograms) cor-
responds to an improved version of the separation of noisy sta-
tionary sources [5] as the smoothed periodograms, obtained by
marginalization, are used instead of the empirical periodograms
(corresponding to the Wigner-Ville distribution marginals).

The paper is organized as follows. Section 2 is devoted to the
main contribution of this paper. We develop the EM algorithm
implementing the maximum likelihood solution in the time fre-
quency domain. The likelihood criteria is interpreted as a regu-
larized matching between the spectral covariances. In Section 3,
results on real fMRI signals illustrate the effectiveness of our pro-
posed method comparing to the ICA solution.

2. REGULARIZED SPECTRAL MATCHING

The temporal fMRI separation relies on the following mixing model:

X = AS + N ,

where X is the (M × T ) matrix of observations, the column
X(:, t) contains the scanned image acquired at the time t and M
is the number of voxels. The (N ×T )-matrix S (the sources) con-
tains the N time courses rows. The (M × N) mixing matrix A
contains the N brain region activations. Each column (M × 1)
of A represents a source image and it is time invariant. Thus, the
column S(:, t) represents the linear combination at the instant t
to produce the image X(:, t). The matrix N models the noise
corrupting the observations. The advantage of taking into account
the noise in the model is to allow the separating algorithm to only
extract the relevant sources, that is the task related brain activa-
tions. This is possible when the spectral profile of the noise is flat
comparing to the more concentrated source spectra. In fact, the
time courses of task related activations present the same frequency
content as the stimulus.

Some of the real signals collected in fMRI imaging are obvi-
ously non stationary. The difficulties thus arising when separating
the different temporal brain activations are the fact that observa-
tions are mixture of two types of sources: stationary sources (task



related activations, thermal noise,...) and non stationary sources
(artifacts). In addition, the noise N is not white and especially
when the observation model is modified to segregate task related
signals from non task related signals.

In the following, we outline the proposed EM algorithm called
hereafter the ”Regularized Spectral EM” as it is the extension of
the Spectral EM [5] and we show some separation results on noisy
real fMRI data.

The Short Time Fourier Transform (STFT) of a signal {x(t)}
is a windowed Fourier transform defined as:

Sx(t, ω) =

Z
x(τ )h(τ − t)e−jωτd τ,

where h is the moving window capturing the signal non stationar-
ity. It is shown that the squared modulus of Sx (called the spectro-
gram) belongs to the Cohen’s Class with the kernel φ equal to Wh,
the Wigner-Ville distribution of the window h. Thus, the spec-
trogram enjoys the positivity property but does not conserve the
marginal properties of the Wigner-Ville distribution.

Exploiting the linearity of the STFT transform, the noisy linear
mixture model conserves its algebraic form under this transforma-
tion:

x(t, ω) = As(t, ω) + n(t, ω), t = 1..T, ω = 1..F,

where, for the sake of clarity, x, s and n also denote the STFT
transforms of the observations, the sources and the noise respec-
tively. Assuming that the noise is stationary white (with unknown
covariance Rn) and that the sources are decorrelated in the time
frequency domain1 (with unknown diagonal covariances {P (t, ω) =
E

ˆ
s(t, ω)s(t, ω)∗˜}ω=1..F

t=1..T ), the likelihood is as follows:

p(X | θ) =

Z
p(X | S, A, Rn)p(S | {P (t, ω)})dS

=
Y
t,ω

|2 π Rt,ω|−1 exp
ˆ−Tr

`
R−1

t,ω x(t, ω)x(t,ω)∗
´˜

,

(1)

where Rt,ω = APt,ωA∗ + Rn and θ is the whole parameter to
be estimated (A, Rn, {P (t, ω)}).

The likelihood (1) can be interpreted as the matching between
STFT covariances matrices Rt,ω = APt,ωA∗ + Rn and empiri-
cal covariances R̂t,ω = x(t, ω)x(t,ω)∗, in the Kullback-Leibler
metric:

log p(X | θ) = −
X
t,ω

DKL(Rt,ω l R̂t,ω) (2)

2.1. Time frequency EM algorithm

The first step of the EM algorithm is the computation of the func-
tional Q(θ, θ(m−1)):

Q(θ, θ(m−1)) = E
ˆ
log p(X ,S | θ) | X ,θ(m−1)

˜

1The decorrelation assumption of the time frequency source points is
only statistically valid for underspread signals, i.e. the ambiguity function
is concentrated in a small neighborhood of the origin [7]. However, our
main objective is the estimation of the unknown parameters and not the
filtering of sources.

Defining the following statistics which will be computed later:8>>>><
>>>>:

Rxx(t, ω) = xt,ωx∗
t,ω

Rxs(t, ω) = xt,ωE
ˆ
st,ω | xt,ω, θ(m−1)

˜∗
Rss(t, ω) = E

ˆ
st,ωs∗

t,ω | xt,ω, θ(m−1)
˜

(3)

the functional Q can be rewritten in the following form:

Q(θ, θ(m−1)) =
X
t,ω

− log |Rn| − Tr(R−1
n [Rxx(t, ω)

+ARss(t, ω)A∗ − ARsx(t, ω) − R∗
sx(t, ω)A∗])

+
X
t,ω

− log |Ps(t, ω)| − Tr
`
P −1

s (t, ω)Rss(t, ω)
´

(4)

The second step is the update of the parameter θ by maximiz-
ing the functional Q(θ, θ(m−1)):

θ(m) = arg max
θ

Q(θ, θ(m−1))

This can be achieved by differentiating the functional Q (4)
with respect to the parameter θ and then equating to zero the partial
derivatives. We obtain the following simple updating equations:

8<
:

A(m) = RxsR
−1
ss

R
(m)
n = Rxx − RxsR

−1
ss Rsx

Ps(t, ω) = diag(Rss(t, ω))

(5)

where the matrices Rxx, Rxs and Rss are the average of the
statistic matrices Rxx(t, ω), Rxs(t, ω) and Rss(t, ω) defined in
(3), over the time frequency domain.

The computation of the statistic matrices (3) is essentially based
on the computation of the a posteriori first and second moments
of the source vector st,ω . Thanks to the a priori Gaussianity of
sources and noise, the a posteriori distribution of the sources is
also Gaussian with the following moments:

E
ˆ
st,ω

˜
= Wt,ωxt,ω

E
ˆ
st,ωst,ω

˜
= Vt,ω + E

ˆ
st,ω

˜
E

ˆ
st,ω

˜∗
where the matrices Wt,ω (Wiener matrix) and Vt,ω (a posteriori
covariance) have the following expressions:(

Wt,ω =
ˆ
A∗R−1

n A + P −1
s (t, ω)

˜−1
A∗R−1

n

Vt,ω =
ˆ
A∗R−1

n A + P −1
s (t, ω)

˜−1

We note that the equations are very similar to a time frequency
Wiener filtering. Consequently, the EM algorithm involves an im-
plicit denoising procedure when computing the first a posteriori
moment of the sources. In other words, we have an optimal source
reconstruction at each step of the algorithm. It is worth noting
that the achievement of the separation solution is strongly linked
to the diversity of the sources spectrograms (the diagonal time fre-
quency distributions of the matrices P (t, w) are different). This is
the fundamental reason to perform the separation in the frequency
domain when the only temporal statistics are not able to provide
such diversity.



2.2. Spectrum Regularization

The estimation of the parameter θ involves the estimation of the
whole spectrograms ({Ps(t, ω)}ω=1..F

t=1..T ) which are smoothed ver-
sions of the Wigner-Ville spectra. In order to accelerate the EM
algorithm, we can partition the time frequency domain into L hor-
izontal sub-domains {Dl}L

l=1 and then estimate the averaged spec-
trograms inside these domains. This is algorithmically equivalent
to assume that the spectrograms are constant in the sub-domains
in the partitioned time frequency 2-D field. Figure 1 illustrate the
horizontal segmentation of the time frequency domain.

We assume then that Ps(t, ω) = Pl for all (t, ω) ∈ Dl. The
statistics Rxx(l), Rxs(l) and Rss(l) (3) are also constant in the
domain Dl. Partitioning the time frequency domain into horizon-
tal bands sub-domains {Dl}, the matching of STFT spectra leads
to the same algorithm as in [5] exploiting the temporal station-
arity but with regularized spectra. In fact, the projection of the
STFT spectrum yields the windowed power spectrum. Maximiz-
ing the likelihood is then equivalent to matching the windowed
periodograms according to equation (2). Thus, the method will
essentially consist in maximizing the likelihood of the parameters
based on the Gaussian modeling of the sources.

As the computation of the observations spectra is performed
off-line, the structure of the algorithm is independent of the parti-
tion choice. In fact, the algorithm is only based on matching the
computed matrices to structured matrices according to the mixture
model. Hereafter the pseudo code of the Regularized Spectral EM
algorithm:

Regularized Spectral EM
1 : Initializing:
2 : Off line computation of the smoothed

covariances Rxx(l)
3 : Initial values for A, Rn and Pl

4 : repeat until convergence,
5 : //----- E-step -----//
6 : for l=1 to L, compute statistics:

7 : Vl =
`
AR−1

n A∗ + P −1
l

´−1

8 : Rxs(l) = Rxx(l)R−1
n AVl

9 : Rss(l) = VlA
∗R−1

n Rxx(l)R−1
n AVl + Vl

10 : end of loop on l,

11 : Rxs = 1
L

X
wl Rxs(l)

12 : Rss = 1
L

X
wl Rss(l)

13 : //------M-step------//
14 : A = RxsR

−1
ss

15 : Rn = diag(Rxx − RxsR
−1
ss R∗

xs)
16 : Pl = diag(Rss(l)), for l=1 to L
17 : Renormalize A and Pl

18 :end of repeat

3. ILLUSTRATION ON FMRI DATA

The Regularized Spectral EM algorithm was applied to separate
the time courses of fMRI data acquired at the FM Kirby Center for
Functional Brain Imaging. The experiment consisted of presenting
two periodic visual stimulus, shifted by 20 s from one another, to
the subject. The stimuli consisted of an 8-Hz reversing checker-
board pattern presented for 15 s in the right visual hemifield, fol-
lowed by 5 s of an asterisk fixation, followed by 15 s of checker-
board presented to the left visual hemifield, followed by 20 s of an

asterisk fixation. The 55 s set of events was repeated four times
for a total of 220 s. Scans were acquired on a Philips NT 1.5-Tesla
scanner. A sagittal localizer scan was performed first, followed by
a T1-weighted anatomic scan [repeat time (TR) = 500 ms, echo
time (TE)= 30 ms, field of view = 24 cm, matrix = 256 × 256,
slice thickness = 5 mm, gap = 0.5 mm] consisting of 18 slices
through the entire brain including most of the cerebellum. Next,
we acquired functional scans over the same 18 slices consisting of
a single-shot, echo-planar scan (TR=1 s, TE= 39 ms, field of view
= 24 cm, matrix= 64×64, slice thickness = 5 mm, gap = 0.5 mm,
flip angle = 90 degrees) obtained consistently over a 3-min, 40-s
period for a total of 220 scans.

Our method is tested on two different slices where we expect,
in each, two different task related components corresponding to
the alternating activation of the right and left visual cortex as a
response to an alternating visual stimulus presented to the subject.
However, we show results for only one slice (slice 10). In Figure 2,
we have plotted three recovered image sources (the three columns
of the estimated mixing matrix Â) within their corresponding esti-
mated time courses. We note the ability of the algorithm to extract
the sources which have a time course correlated with the stimulus.
The first and third sources correspond to the alternative activations
of the right and left visual cortex as expected from the conditions
of the stimulus presented to the subject. However, the algorithm
extracts also another source (the second one) which has a spec-
tral density similar to the first two sources. This shows that fixing
the number of sources by intuitive expectation based on the ex-
periment paradigm leads to wrong results. The results shown in
Figure 2 were obtained by varying the number of sources and then
studying a posteriori the results after convergence of the EM al-
gorithm. An automatic selection of the number of components is
thus needed for a complete blind analysis of the fMRI data. Fig-
ure 3 illustrates the times courses of the right and left visual cortex
regions. We note the periodicity of the time courses and their rel-
ative inter-delay (around 20 s) corresponding to the inter-delay of
the stimulus (the checkerboard pattern was presented alternatively
to the right and left visual hemifields). For comparison purposes,
we reported the separation results of a temporal ICA InfoMax [8]
algorithm on the same data set, in Figure 4. We have fixed the
number of sources to 3. The ICA algorithm fails to extract the
third source from the two alternative task related sources identi-
fied with the EM algorithm, mixing them with a higher frequency
component.

4. CONCLUSION

We have presented an EM algorithm to deal with real data suffering
from non stationarity and a lack of enough points for spectral anal-
ysis. The separation method is essentially based on the diversity of
the source smoothed periodograms. The non stationarity of second
order statistics allows the mixing matrix identification without re-
sorting to higher order statistics. The use of second order statistics
(in other words, the Gaussian modeling) leads to an efficient and
fast implementation of the EM algorithm. In fMRI data analysis,
we have exploited this diversity between the time course spectra.
The spatial pixel distributions represent the columns of the mix-
ing matrix. Therefore, the Regularized Spectral EM algorithm al-
lows a blind joint estimation of the brain source images within the
spectra of their time courses. The task related sources are easily
distinguished by the signature of the stimulus in their time course
spectra.
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Fig. 1. Marginal partitioning of the Time Frequency domain: ex-
ploitation of the spectral non stationarity.
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Fig. 2. The recovered sources with the Regularized Spectral EM
algorithm for slice 10. The first and third sources correspond to
the left and right visual cortex activations.
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Fig. 3. The recovered time courses with the Regularized Spec-
tral EM algorithm. Their temporal inter-delay is about 20 s corre-
sponding to inter-delay between the alternative temporal stimulus
presented to the subject.

0 220s 0 220s 0 220s 

Fig. 4. The recovered sources with the ICA InfoMax algorithm for
the Slice 10. The alternative task related sources are not separated
from the transient signal (the image in the middle of the Figure 2).


